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Abstract—This work exploits the idea on how to search
parameter estimation and increase its convergence speed for the
Liner Time Invariant (LTI) system. The convergence speed of
parameter estimation is the one problem and plays an important
role in the adaptive controller to increase performance. The
well-known algorithm is the recursive least square algorithm.
However, the speed of convergence is still low and is influenced
by the number of sampling, which is represented by the limited
availability for the information vector. We offer a new method to
increase the convergence speed by applying Quasi-ARX model.
Quasi-ARX model performs two steps identification process
by presenting parameter estimation as a function over time.
The first, parameters estimation of macro-part sub-model are
searched by the least square error, and the second is to sharpen
the searching by performing backpropagation learning of multi
layer parceptron network.

I. INTRODUCTION

HE problem of identifying parameters of the linear

system has been studied extensively [1]-[13]. Especially
in the application such as controller design, some controller
laws are created by utilizing parameters estimation as con-
troller variable [14]-[21]. The accuracy in tracking parameter
estimation, and the speed of convergence plays an important
role to increase the response performance of the adaptive
controller. The parameter estimations are also able to be
applied to estimate state observers, and to design Kalman
filtering [18]-[24].

The one problem to increase performance in the adaptive
controller is the speed of convergence to search parameter
estimation. The recursive least square algorithm is the well-
known method to identify the parameter estimation. How-
ever, the speed of convergence is still low and is influenced
by the number of sampling, which is represented by the
limited availability for information vector. In this case, we
offer a new method to increase the speed of convergence in
the identification process by sharpening learning process to
search true parameter estimation. We use two steps learning
process. The first is the least square error algorithm to
mapping the system input-output, then we have the parameter
estimation, which will be sharpened by the next learning
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process. The second learning is performed by using the core-
part sub-model with the back propagation learning algorithms
to update parameter estimation.

Quasi-ARX model decomposes the system into two sub-
models, macro-part and core-part. The linear time invariant
system is depicted by the macro-part. It represents the
correlation between the input vector and its coefficients. The
core-part represents the coefficient or parameter estimation.
It parameterize the input space. The first learning of Quasi-
ARX model is to searching parameter estimation by gradient
learning of the least-squares error algorithm [25]-[32]. The
second learning is to refining parameter estimation by core-
part sub-model. The core-part has a specific structure, so
it can be formed by using Multi-Layer Parceptron (MLP)
neural network model, fuzzy, radial basis function or wavelet
network. The structures of neural network in the core-part
sub-model are able to be trained with different method
and algorithm [25]. Generally, the improvement of Quasi-
ARX model can be found by modification in leamning or in
structure of the core-part sub-model [25]-[29].

Quasi-ARX model is then applied to identifying linear
time invariant system. To show the best performance in iden-
tification method, the performance of Quasi-ARX algorithm
is compared with RLS algorithm. The index performances
are measured to show the accuracy of the model, the accuracy
of the estimated parameter, fast learning, and convergence
speed of error. The proposed method needs a few times to
estimate the parameter accurately. Through the theoretical
analysis and simulation experiments, it offers best perfor-
mance in both of accuracy and fast convergence time.

II. PROBLEM DESCRIPTION

The discrete model with single-input and single-output
(SISO) of LTI system is shown in Fig. 1. The system, which
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Fig. 1. The linear time invariant system is added with noise disturbance

is depicted in Fig. 1, can be described into n-th order of
difference equation with constant coefficients as,

(k) + mx(k - 1)+ ...+ ap @k —ny) =
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byu(k = 1) + ... + by, u(k = ny) (1
y(k) = x(k) + e(k) (2)

where u(k) € R is system input, y(k) € R is system
output, e(k) € R is zero mean noise added to the system,
and k = 1,2,--- | N is the sampling sequences. The noise
e(t) is a stationary random process with zero mean, and it
is uncorrelated to the system’s input-output. The continuous
time ¢ is equal to kT in discrete time, where k is the number
of sampling, and T is the constant time sampling. Suppose
that the system’s input-output are sampled at k-th, so the
time at k-th is k7" and the signal value at time AT can be
written as u(k) for the input, and y(k) for the output.

We introduce the shifting operator such as ¢~ 'y(k)=y(k —
1). By using this operator, The system also can be written
as,

Alg~"y(k) = Blg=1)x(k) + e(k) 3)
Al =1+a1g7 +ag 2+ ... + Ay, q "
Blg ) =big " +bag 2 + ..+ by g
0 = [ay,az,...,an,, b1, ba, ... by .

we assumed that the degree of n, and n, are known. The
initial condition at k=0 are known as y(0), u(0), and e(0),
and the € is the parameter estimation of LTI system. In
this case, the problem under study is to estimate parameter
estimation of the system stated as @. In matrix equation, if
the initial condition at k=0, y(0) =0, «(0) = 0, and e(0) =0,
then the output of the system can be described as,

y(k) = o(k)0" + e(k) )

where @ is the parameter estimation and ¢(k) is the informa-
tion vector. The information vector is the system input-output
composed with time delay. Written in discrete is stated as,

olk) = [y(k — 1)..y(k — ny) u(k — 1)..u(k — n,)]

ITI. QuasI-ARX MODEL FOR LTI SYSTEM
IDENTIFICATION

Consider a function with single-input single-output (SISO)
black-box model is described as,

y() = g(o(t) +e(t) &)

where y(t) € R, e(t) € R, t is the continuous time.
The g(-) € R is the unknown function. The ¢(t) is the
information vector. The noise of the system e(t) is the zero
mean random signal added to the system. By using Taylor-
expansion series, (5) can be rewritten into matrix equation

as (6) [25)-[32),
u(t) = yo + 60" (6(1)) + e(D)- (6)

The initial condition is stated as ¥,. Based on (6), we propose
to identification LTI system by two steps identification pro-
cess. The first is to searching parameter estimation by LSE
algorithm in the macro-part sub-model, and the second step
is backpropagation algorithm in the core-part sub-model. The
proposed identification technique is shown in Fig. 2.
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Fig. 2. Identification technique to sharpen the convergence speed by two
steps identification process.
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Fig. 3. Quasi-ARX neural network model.

See in (6), the information vector ¢(1) is as variable of the
parameter estimation #(¢(t)). The output of the Quasi-ARX
neural network model for y,=0 in discrete time can be stated
as,

y(k, 6(k)) = 6(k)6" (o(k)). M

where 0(o(k)) = [aq k) @nyk) bk bingi)- It is
clearly that @(¢(k)) is a function over time. The macro-part
sub-model is expressed by,

y(k,o(k)) = o(k)U7 (k). (®)

The infonnn)n vector dimension of ¢(k) is equal to n,
+ n,. The number of hidden node is m. The number of
output node in the core-part sub-model is the same as the
information vector dimensions n. The core-part sub-model
is performed by the MLP neural network model expressed
as,

Ab(e(k)) = WoI'(W1(6(k)) + B). )
The update of the parameter estimation is performed by,
&é(k)) = Ad(o(k)) + U(k) (10)

wheffl A6 = {W,, Wa, B}, W; € R™™ W5 € R™™, B €
R™ is the weight matrix at the first, the second layer, and
the bias vector of input nodes. J € R™ is the bias vector
of the output nodes in the macro-part sub-model, and I' is
the diagonal nonlinear operator with the identical sigmoidal
elements on hidden nodes. The best solution of the Quasi-
ARX model incorporating neural network is shown on Fig. 3.

The prediction output from the Quasi-ARX neural network
model can be determined if the problem in (7) satisfies to
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mapping the input-output of the system. The optimal solution
of parameter estimation can be applied to prediction for the
next output stated as,

yp(k + dlk, &(k)) = o(k + d)6” (6(k)) (1

where, ¥, (k+ d|k, ¢(k)) is the output of d ahead prediction,
dk+d) = yk+d-1)yk+d—-2)-ylk+d-
ny) ulk +d— 1) wlk +d —2)---u(k + d — n,)] is the
information vector for d ahead prediction, and 6(o(k)) =
[a(l!k) ol ﬁ(ﬂr:k) i’(l,k) Hoa B‘(ﬂmk)] is the estimated parameter
estimation, and d is the time delay operator,

IV. LEARNING ALGORITHM FOR QUASI-ARX NEURAL
NETWORK

The learning algorithm for Quasi-ARX model is performed
by the backpropagation error algorithm for the core-part sub-
model, and LSE algorithm for the macro-part sub-model.
Let we introduce two sub-models =z (k) = y(k,o(k)) —
S(R)AOT (g(k)), and =, (k) = y(k,¢(K)) — $(k)OT to
become learning guide. The learning output guidance to train
sub-models are expressed as,

SM1  z(k) = ¢(k)OT (k). (12)

SM2 (k) = ¢(k) A0 (9(k)). (13)

The step of learning algorithm of Quasi-ARX neural
network is described by,

1) set U = 0; and small initial values to W,, W, and B,
set # = 1, where i is the learning number.

2) calculate z(k), then estimate U for sub-model SM1
by using a least-squares error algorithnn

3) calculate =, (k), then estimate W5, W5, and B for sub-
model SN2 This is realized by using the well-known
backpropagation (BP) algorithm.

4) use the (10) to update 6(H(k))

5) stop if pre-specified conditions are met, otherwise go
Step 2, and repeat the estimation of {3, and Wy, Ws,
and B, set i =i+ 1.

V. RECURSIVE LEAST-SQUARES ALGORITHM

Recursive leas square algorithm is very well known algo-
rithm applied to estimate the parameter estimation of the LTI
system by online. Many researchers have made improvement,
modify and development of RLS algorithm to increase the
accuracy of the estimated parameter estimation [3]-[13]. The
RLS estimation techniques are the fundamental technique
in adaptive signal processing applications. The equation (4)
is the problem that will be solved by Quasi-ARX neural
network, then the results are compared with RLS algorithm.

The Algorithm of RLS is performed by minimizing cost
function stated as,

kr

JO) = (y(k) — o(k)6" (k) (14)

k=1

where k, is the last sampling number, and ¢(k)o” (k) is
nonsingular for all k. The estimation of #(k) recursively are
described as,

B(k) = B(k = 1) = K (k) (y(k) - ¢(k.)é’"(k ~1). ()
1
P(k=1)6" (k)

KW= fompe 1)@

(16)

P(k) = [1 — K(k)oT (k)] P(k - 1). (17)
VI. EXPERIMENTAL STUDIES

The Quasi-ARX neural network model is applied to iden-
tification Linear Time Invariant (LTI) system. The Pseudo
Random Binary Sequence Signal (PRBS) is as input. The
system is added with zero mean noise. The proposed al-
gorithm is tested to measure performance identification in
switched mode power converters (SMPC) in [4]. The SMPC
discrete transfer function is stated as,

0.226¢~! + 0.1118¢2

—iln
Gla™) = 1—-1.914¢ ' +0.949¢ 2

(18)

The output of the system has a ripple caused by signal
perturbation is approximately 10% or source to noise ratio
(SNR) 20 dB of the system output. The SNR gaussian noise
is expressed as,

N 2
SNR = 1010g(kebZlkX ) (19)

2=r €(k)?
The core-part sub-model is performed by MLP neural net-
work. The number of input node n is the sum of n,=2 and
n,,=2, and the information vector is as the input , the number
of hidden node and output node is the same as input. The
result of system identification which represent the accuracy
of input-output of the system by Quasi-ARX neural network
is shown in Fig. 4 and Fig. 6. The accuracy of input-output
of the system by the RLS algorithm is shown in Fig. 5 and
Fig. 6. The MSE error over time is shown in Fig. 6, the red
line represent the MSE error by RLS algorithm and blue line

by Quasi-ARX model.
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Fig. 4. System Output, Model Output and Error of the Quasi-ARX for

step ahead prediction
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Fig. 6. The MSE Index Performance for step ahead prediction

The performances of system identification are measured
by Mean Squares Error (MSE) Index to show the accuracy
of system input-output.

Zh 1(p (B)
MSE

N
The accuracies of the estimated parameter are measured by
Root Mean squares of Parameter (WSP) stated as,

Thy Ty _“ 2
mase - \/z“ R G ) SRR
N(ny + ny)

The paramel.er estimation and its accuracy are shown in
Fig. 7 and Fig. 9 by using Quasi-ARX neural network, and
are shown in Fig. 8 and Fig. 9 by using RLS algorithm.
The solid line is the true value, and the dashed line is the
estimated value. Blue line, red line, black line and green
e are the parameter estimation of ai, as, by and bs. The
RMSP error is shown in Fig. 9, the red line represent the
RMSP error by RLS algorithm and blue line by Quasi-ARX
model.

The performance of estimated parameter (EMP) by Quasi-
ARX is shown in Table [, and the EMP by RLS algorithm
is shown in Table II. The average of RMSP in one hundred
sampling is 0.00247 by Quasi-ARX, and 0.329 by RLS
algorithm.

- y(k)? -

VII. RESULT AND DISCUSSION

In this system identification, we introduce to apply Quasi-
ARX model to estimate a parameter for the LTI system.
Therefore, we pay much attention in the accuracy of the
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Fig. 7. The estimated parameter by using Quasi-ARX neural network
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Fig. 8. The estimated parameter by using RLS algorithm

parameter estimation instead of the accuracy of the system
input-output. The fast convergence to find the estimated
parameter are to be sharpened by the core-part sub-model
of Quasi-ARX neural network. We can see the accuracy of
the model, which is shown in Fig. 4, Fig. 5 and Fig. 6. It
indicates that the Quasi-ARX neural network model is more
accurate model compared to the RLS model algorithms.
The performances in searching of the estimated parameter
estimation are shown in Fig. 7.Fig. 8, Fig. 9, Table I,
and Table [II. We can see that the Quasi-ARX neural
network is the more accurate model to estimate the parameter
estimation of the LTI system. The average of RMS error of
the parameter estimation (RMSP) in one hundred sampling
are 0.00247 identified by the Quasi-ARX model, and is 0.329
identified by RLS algorithm. The convergence speed by using
Quasi-ARX model is also fast. See Fig. 9, the RMSP error
in log scale is the -2.134 or (.74 percent can be achieved
at first sampling identified by Quasi-ARX model. The same
performance is reached by RLS algorithm in about forty three
sampling. We can conclude that the tracking parameters’
estimations are very slow by using RLS algorithm.
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