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Abstract—In our previous research, an error-based switch-
ing control has already used for controlling nonlinear system.

wever, the switching function is not work efficiently, because
it is difficult to obtain more information from er vector to
determine the stability of the control system. Hence unnecessary
switching to linear controller will be longer and more often
that causes the accuracy of the control system become poor. In
this paper, a new switching based on Lyapunov stability
theorem is proposed which is ived from the state dependent
parameter estimation (SDPE). Not only error but also one up to
p-th differential error will be available as the switching variable.
Thus the proposed control method is able to keep the stability
and improvSithe accuracy of the control system. A numerical
simulation reveal that the proposed control gives satisfactory
tracking and disturbances rejection performances. Experimental
results demonstrate its effectiveness.

[. INTRODUCTION

Nonlinear system with the parameter always uncertain has
more than one stability region [1]. For those problems, with
only nonlinear controller cannot guarantee the bounded of the
input-output closed-loop control. To relax nonlinear control
and to guarantee bounded controller, two controllers are used
with switching mech:ﬂm. Thought, by using the linearization
technique, nonlinear system is linear to the input controller,
therefore the control law can be derived [2], [3], [4]. IS
[6]. With a different approach of linearization technique, a
nonlinear system can also be expressed as a linear relationship
between nonlinear coefficient and its input vector called as
quasi-linear ARX model. Thus the control law can be derived
by a simple linear inverse utilizing rnlinear coefficient. In this
paper, the controller strategy under a quasi-linear ARX model
is used to control nonlinear system. Fortunately, quasi-{jiear
model is comprised with the two parts parameter of the linear
and nonlinear. It can be used to facilitate the controller design
based on the estimated parameter of the linear and nonlinear
pacombined with switching mechanism.

A quasi-ARX neural networks (QARXNN) model is a
nonlinear model. It can be simplified as a linear correlation
between the input vector and its nonlinear coefficient. An
embedded system is a sub-system to give a coeflicient for
each element of the input vector. The coefficient called as
state dependent parameter estimation (SDPE) that consists of
two parts: linear parameter and nonlinear parameter. The linear
parameter estimator (LPE) is performed by least square error
(LSE) algorithm, which is set as bias vector for the output
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nodes of nonlinear multi layers Parceptron neural network
(MLPNN) perforrni by gradient-descent-based learning algo-
rithm [7], [8], [9]. In view of a nonlinear system is modeled un-
der a quasi-linear autoregressive (quasi-ARX) model, nonlinear
nature is placed on to the coefficients[{lf the autoregressive
(AR) or autoregressive moving average (ARMA). If the system
is linear than SDPE will converge at the fixed value, whereas
if the system is nonlinear then SDPE is a variable that will
change at any time [10]. Because QARXNN prediction model
consists of two parts parameter. It is easy to design fglitching-
based control utilizing its parameters. Therefore, the controller
is comprised of a linear robust adaptive controller (LRAC), a
nonlinear robust adaptive controller (NRAC), and a switching
mechanism. NRAC controller is designed based on SDPE that
is the output of MLPNN, whereas LRAC is designed based on
linear part parameter estimator (LPE) with the LSE algorithm.

A switclZdg control based on error convergence index uses
& error in the linear and nonlinear parts as switching variable.
It is difficult to obtain a lot of information based on error
vector to determine the stability of nonlinear systems. It only
able to detect the condition of the system tends |4 be stable
or unstable by the next controller input. Thus unnecessary
switching to linear controller will be longer ananore often
resulting poor controller performance. Therefore, in this paper,
a different switching mechanism is proposed based on the
state of dynamics tracking erroeo that much information
can be obtained. The switching based on convergence index
of error is a function that uses the error space as variable,
whereas the proposed switching control uses the slammce
of error dynamic. By using Lyapunov theorem, the stability
of the closed-loop system is derived based on the state of
dynane tracking error resulting the switching mechanism can
work more effective and efficient. Moreover, the switching
formula use SDPE as switching variable make it easy to be
usabecause it is already available from prediction model.

By using the proposed switching law, the controller is
comprised of a linear robust adaptive controller (LRAC), a
nonlinear robust adaptive controller (NRAC), and a switching
mechanism. NRAC controller is designed Eiised on both of
linear and nonlinear parts of SDPE, whereas LRAC is designed
by using only linear part parameter estimator. To begin,
a QARXNN model is vsed to identify a dynamic system
online. The network parameters are updated continuously
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in accordance with the sampling time. The trained network
weights of QARXNN is used to estimate SDPE by the next
regression input. With the estimated parameters of the linear
and nonlinear parts, the dynamics tracking error is derived.
The stability of the overall system is then verified by Lyapunov
theorem so that ultimately bounded tracking is accomplished.

The advantages of the use proposed L‘(‘J]‘ltg'ﬁ]’ as follows:
1) a simplified quasi-ARX neural network model presented
by state dependent parameter estimation (SDPE) is used to
derive the controller formulation to deal with its computational
complexity. 2) The control law can be derived easily from
e:n:lel prediction based on linearization technique that the
system is linear to the input controller. The SDPE is used
to parameterize the input vector. Hence, the control law is
derived by utilizing the transformation by its linear inverse. 3)
Lyapunov-based switching control is performed to guarantee
the closed-loop stability usinge state dependent parameter
(SDPE). It improve controller accuracy by reducing unneces-
sary switching to linear controller.

II. Quasi-ARX NEurAL NETWORKS MODEL

Consider a single-input single-output (SISO) black-box time
invariant system, whose input-output relationship is described

by
g(o(1)) (1)

where ¢g(-) denotes a nonlinear function, y(f) € R denotes the
system output and ¢ = 1,2,--- denotes the sampling of tirﬂ
The quasi-linear ARX model is nonlinear model derived by
performing Taylor expansion series of nonlinear system. The
model predictor is made linear the input variable u(r) presented

as [7], [11]:
yiy = ¢ (ONED) 2)

where (B [y(t— 1)--y(t = n,) u(t = 1)---u(t - n,)]" and
R0 = lagg - a0 bag 'b(u,,,:)]rv &) = [y(r=1)-- -yt —
nu(t—2)- - ult—n,)»(t)]" are the input r, the coefficients
of the input vector, and the the input of embedded system of
MLPNN, i8spectively. »(f) is a virtual input and the reference
€B: point can be set as v(1). ¢(t) € R™="*" where n, and n,
denote the orders of time delay in the input and the orders of
time delay in t output, respectively.

The SDPE consists of the linear parameters (LEJ6 and
nonlinear parameter (NP) 6(£(r)). LP and NP are executed
using the least-squares error (LSE) algorithm and gradient
descent based MIMO-MLPNN, respectively. The SDPE is the
sum of LP and NP for the nonlinear robust adaptive controller
(NRAC) while for LRAﬁonly LP is used.

N(ra.ﬂ) =6 +6 3

where Q = {W;, W»,#) is the network parameters that consists
of the weights of the hidden layer W, the weights of output
layer W, and the bias vector of the output nodes #. Nonlinear
part executed by MLPNN is described by

0(£(0), W) = WoI'Wi(£(D). @

y(ny =
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MIMO MLP Neural Network

Fig. 1. A QARXNN with an embedded MIMO-MLPNN .

where I' is the diagonal nonlinear operator with the identical
sigmoidal elementsmhidden nodes and W = {W;, W>}. The
detail algorithm of the quasnRX neural network model can
be found in [7]. [10], [12]. Fig. 1 shofla QARXNN model
with a MLPNN is an embedded system. In our main theoretical
result, the following assumption are made.

Al. The pairs of the input-output of training data are bounded.
A2. The coefficients of the regression vector N(£(1)) are
bounded.

A3. There exists optimal weights of the regression coefficient

N'(&(). @
III. CONTROL STRATEGY

A model in (2) is simplified and can be rewritten in the form
of the relationship between the input vector and its coefficients
as follows:

y() = appylt—1)+apnyt—2) +

ﬁ("v"’)y(l - ny) + buni{(f - l) +

byt =2) + by, pult — n.,). )
where R(£(1) = [, -- “8a,ayb1sy - B, p]T s the coefficient
of the input vector called as SDPE. Define the tracking error

vector as foaws:

E(t)y = (el),él),e(t), - ,épa (1)),
ey = y -y,
ety = ? = (e(t) —e(t — 1))/ A1,
ep1() = (e(r— Pﬁ) —e(t—p+ 1))/AsL, (6)

The tracking error vector is derived by using QARXNN
prediction model such as:

r) de(r)
u at

= (O -y' ) - -1) -yt = 1))/ At
(ay(r) — sy (0)/Ar = () — i (1), (N

where the notation of Ay(r) denotes y(r) —y(tr — 1). The closed-
loop system of the tracking error vector dynamics is described

= (e(r) — et = )/ A,
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as:
hp() = () + K E(0)
IO =) = —kpep1 () = kporepa() — -+ = kye(t)
ép = _kpép—l(f)_kp—]ép—Z(f)_"' _kle(f)

0 = ép+kppr(D+kp1épa(t) + -+ kyelr)

(8)
where K = [kp, kp-y - ki1 € R?, ki(i = 1,---, p) are positive
constants, 4/ is the reference input trajectory, and p is the
degree of tracking error derivative.

To derive the control signal, model in (5) can be rewritten
as

1
u(t = 1) 5—(9(-‘ ) +g(0) &)
Lt

=AYt = 1) = Gy —2)
_a'fn,,r}y(‘ - ”{,r) - I'!)(2,r]“(1f -2)
_B{n,,;]“(f - n)). (10)

If model in (2) is sinaiﬁed with (5), satisfies the input-
output mapping of the system, assumption Al.,A2. and A3.
are fulfilled, &n the output at time (z + d) can be predicted.
Equation (2) is regressed at time (f + d) to calculate the output
at d step ahead prediction described as,

g(1)

yi+d) = ¢'(t+dDNED+d) (11)

where R(&(t+d)) = [A(1 gy * - Anyvd) D(1,52d) -~ Dng ey i the
coefficient of the input vector, ¢(t +d) = [y(t +d — 1) y(t +d —
2) - - y(t+d—-nyu(t+d-1u(t+d-2) - - - u(t+d-n,))" is the input
vector at d step ahead prediction, and &(1+d) = [y(t+d—1)y(1+
d=2) - - - y(t+d—nu(t+d=2)u(t+d-3) - - - u(t+d—n,~ Dv(t+d)]”
. For online step ahead prediction d is equal to one. From (11),
we have

1
ut) = = (Wt + 1)+ gt+1)) (12)
bl..'+l
glt+1) = —aq iyt — ao gyt —1)
= = A, ey = 1y + 1) = b enyu(t — 1)
= or = by eyt — n, + 1)). o (13)

where u(r) is a control signal corresponding to the networks
output of y(#) and u*(r) is the desired control signal which
correspond to y! (4! denotes the desired control output).
However, in cases of nonlinear systems, the parameters are
always uncertain that may cause instability to the system.

To maintain the accuracy of the closed-loop control and
stability, the switching line inlsed between the linear and
nonlinear parameters. SDPE can be divided by linear and
nonlinear parts, thus the control law can be defined as:

u(t) = y(u, + (1 —x(r)h(r). (14)

where 1; is a control signal calculated by Tinear robust control
by using linear part parameters of # and u, is a control signal
by nonlinear robust control using nonlinear part parameters of
f{(-). x(1) 1s a switching line which y(r) = 1 denotes nonlinear
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robust control and y(1) = 0 denotes linear robust control. By
(12) and (14), we define a controller estimation error as

u(t) — u'(1) e ]

(A= 1) + 50+ 1)) -
lisl
L (s D))

Lr+l

= - : Wi+ D -+ 1D+

Lesl

B 1-gat+1)

Ui = : (e(t+ 1)+ G) (15)
by

where U = u(-)-u"(-),G = g(-)—g(-), §(-) is calculated using the
output of prediction model. The error tracking can be obtained
by

et+1) = y+)—y'a+1)=b aUW®O-GI+1)
e(t+1) = e(t+1)—el
= by UM =b,U@t=1)=G(t+1) + G(1)
et+1) = e(r+1)—el
= buU@W-2b,UG@-1)
b1 Ut =2) - G+ 1)+ 2G(1) - Gt - 1)
et+1) = et+1)-évn
= biwmU@) - 3b1, UG- 1)
+3b1,1 Ut = 2) = by, Ut - 3)
-G+ 1)+3G0 -3G(t-1)+G(t-2)
eqit+1) = é(t+1)-eés3n

= f’l,&l[m' 4by, Ut - 1)
+6b1 -\ UB)=2) - 4b1,2U(t - 3)
+h1 43U (1 = 4) = G(t + 1) + 4G(1)
-6G(t - 1)+ 4G(t - 2) - G(t - 3) (16)

Through (8) and (16), the dynamic tracking error can be stated
as follows:

E = AE+BU+G. (17)
where
1 0
| I : : i |1
0 0 0 1
= —kpy oo —k;
It'l.:+l 0 0 0
bl,.-+l —bl.,- 0 0
B= . . . . ,
C]Bl,.l+3—p _(-'25[..'4—2—;) (_]]p('p+lgl,.l+2—p
U(r)
U= U(f _ D sand
Uit-—p+1)
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=Gl(t+1)
-G(t+ D+ G

¢ m
—1GA+3-p)+- -+ (=), Gt +2 = p)
nlere A is a nonsingular matrix, ¢, are binomial series
P - ]
r

p!
= ;——‘_{P_,}!,OS r<p.

&By (8) and (17), we can calculate K such that the roots of
characteristic equation (17) can be chosen strictly in such
a way that the poles lie in the left half of the complex plane.
alis will ensure lim,_ e(f) = 0. A minimum approximation
control error can bedeﬁned as

coefficients such as

& u' — u(EIN"().

(18)

gle controller objective is to maintain stability and accuracy
of the closed-loop system by considering & such that

8&°() = ardBlin [sup 1),
) dr”xt.}é} [‘;_-:B' 1

gmre N*(-) is an optimal network weight that achieves the
minimum approximation error obtained through network learn-
ing. If the system dynamic in (17) is a bounded by (|U| < &),
then there are will be a positive real number of & By

introdl.a'ng g m(17)
E AE + B(U(EIN(-)) = UEIN"(-D) - &)+ G.

(19)

Consider a Lyapunov function stated as

1
2
where P is a symmetric positive definite matrix. Since V(1)
was selected to be positive definite, V(r) has to be negative

idefinite in order to make the system is uniformly stable.
Therefore, we require V() -ETQE to be a negative
semidefinite that implies V(r) £ V(0). A negative semidefinite
matrix @ is stated as

Q

V(1) E'PE (20)

= —(ATP+PA) (21)

Theorem 1: Suppose a dynamic tracking error is described by
J(E; 1)

where f(0, 1) = 0 for all r. If there exists scalar function V(E, 1)
having continuous first partial derivative and satisfying the
condition:

1) V(E,1) is a positive definite

2) V(E,n)isa negative semidefinite,
then the equilibrium state at the origin is uniformly stable.

For the system of (19), an equilibrium state E, is defined
as f(E,t) = 0,¥t. For nonlinear systems, there are one or
more E,. We denote a spherical region of radius r about an
equilibrium state as || E — E. [|< r as the Euclidean norm
defined by

E = (22)

L E - E. l= (E1 = Ere)* + -+ +(Ep — Ep))1. (23)
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1

t S () consist of all point such that || £ - E, ||< y where
¥ = &. The time derivative of Lyapunov function along any
trajectory is

V()

! T ! T
5ETPE + SETPE.

1]

%E + B(U(EIN(-)) = U(EIN*(-)) — &) + G)" PE +
%ETP[AE + BUEGNG) - UEN0) - )+ G)

%ﬂT'A"'PE + ETPAE) + %(3{0 -g)+G) PE +
1

SE ﬂ(ﬁ(ﬁ -£)+G)

—lnETQE) + %((3(0 -€)+G)PE

+E'@BU - ¢ + G)
1 _ =
—E(EQE) +(B(U - &)+ G) PE

—%(ETQE) +(U - &) B"PE + G"PE
Bhere U = UEINC) - UEIR(-).

Theorefgl2: Using prediction model of (2),control law given
in (14), by a positive constant & such that

—%(ETQE) +(U-2)"B"PE +G"PE,p <0 (25)

(24)

<

P

then lim,_,., E(f) = 0, E(f) — 0 at t — oo, the tracking error e
will converge to zero.

According the Lyapunov theory, by V(1) < 0, it implies
that E is bounded by a positive constant & that satisfies (25).
From the convergence analysis based on Lyapunov theorem,
the following can be conclude:

1) Vi) is actually total derivative of V(1) with respect to ¢
along solution of the system. By V(7) < 0 implies V(1) is
decreasing function of 1. By (25) with a positive constant
&, the closed-loop error trajectory (20) is a definite positif
and non-increasing and by (19), E is also bounded. As a
result, the QARXNN based adaptive control is stable and
uniformly bounded. Therefore, lim;_,., E(f) = 0, E(t) —
0 at 1 — oo, the tracking error of closed-loop system e
will converge to zero.

For linear robust control, A is a nonsingular matrix
then there exists one equilibrium sug Therefore V(1) <
-3(ETQE), V1, that implies lim,_,., E(t) = 0, E(t) — 0
at t — oo, the tracking error of closed-loop system e will
converge to zero for all time.

According Theorem 2:, a switching line is used to change
control action between linear part controller and nonlinear part
controller. The proposed model only with linear parameters has
to work until the use of nonlinear parameters does not damage
the stability of closed loop system. Therefore, the controller
with using linear parameters & will work all the time, but the
nonlinear arameters R(&(1) will work under the switching
sequence. The control law (14) works under the switching line

2)
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Dymamic -

Switching line

Fig. 2. Nonlinear adaptive predictive controller based on QARXNN predic-
tion model. i = 1,--- ,ny,j=1,--- ,ny

as follows:
ifp<0
otherwise

1,

0. (26)

X = {

For the system (2), a nonlinear predictive controller based
QARXNN model contains a feedback controller, QARXNN
predictive model, and a switching mechanism shown by Fig. 2.
Here, the feedback controller is performed based on the
dynamics tracing error (19) with Lyapunov stability theorem
(20), (24). By using QARXNN prediction model with two
parameters of linear and nonlinear, two controllers also can
be oHflined with switching mechanism of (12), (14),(25),and
(26). In the following, the design algorithm of the proposed
control law can be summarized as follows.

Step 1.Identify the system under QARXNN model described
in Section 2.

Step 2.Find the estimated parameter of SDPE by using
simplified QARXNN prediction model

Step 3.By using SDPE, calculate dynamics tracking error
shown by dynamic matrix of A in (17); and by
introducing &, find a new state of dynamics tracking
error in (19) to obtain stability region with specific &
(e<y.

Step 4.Check the stability of NRAC controller by satisfying
(25) and switching line of (26).

Step 5.Calculate controller signal using (12), two controller
can be obtained by using the linear and nonlinear
parts parameters of SDPE via switching mechanism
in (14),(25),and (26).

Step 6.Goto Step 1..

IV. SmuLaTion REsuLT

In this section, an glstmtive example is provided to demon-
strate the perf@hance of the proposed controller.

Example: A nonlinear discrete-time dynamical system
mixed with external disturbances given by [13] and [14] is
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Ref
——— Proposed controller
— — MVC-QARXNN

200 350

'

o S0 iLY 150 250 400

Fig. 3. Output responses (under external disturbances)

observed. The system model is stated as follows:

y(1) 0.9722y(1 - 1) + 0.378u(t - 1) — 0.|FP5u(t - 2)
0.3103y(r — Du(r — 1) — 0.042284°(1 — 2)

+  0.1663y(r — 2)ult — 2) — 0.03259°(1 — Dy(t — 2)
- 0.3513%(t = Du(z—2)
+ 0.3084y(1 — Dy(t — 2u(r - 2)

0.1087y(s — 2)u(t — Dut — 2) + w(?). 27

The reference input and the external disturbances w(f) are
given by

pon 0<r<200
yo = {0, 200 < 1 < 400 %)
0. 0<r<100
w) = {005 100<¢<300 (29)
0.2, 300 < <400

From the system model (27), an embedded system MLPNN
of QARXNN is constructed with three layer neural network.
The input vector of () is specified by ¢(r) = [yl 1) y( -
2)ult — 1) u(t — 2)]" with n, = 2 and n, = 2, the number
of input nodes, hidden nodes, and output nodes is also the
same as n = n, + n,. Constant learning rate of BP algorithm
is selected by 7, = 0.1 and gain of adaptive tracking control
based on QARXNNamdcl are given by: ¥ = 0.02, p = 2,

_ (01 0
Q= ( 0 0.1
proposed controller, this example is performem which the
system is mixed wi external disturbances. Fig. 3, Fig. 4,
Fig. 5, and Fig. 6 show the output responses, the control
signals, the tracking errors, and the switching sequences of
the proposed controller compared with our previous work of
minimum vaf@nce controller baased on QARXNN (MVC-
QARXNN). With the outputesponse and error shown by
Fig. 3 and Fig. 5, it indicates that the proposed controller can
adapt the external disturbance mixed in nonlinear system. The
details of comparison are summarized in Table 1. As can be
seen, the performance of the proposcontroller is better than
those that can be obtained with the other Conllers.

From the simulation results, Fig. 6 shows that the amount
of time switching to linear controller is less using the proposed
controller compared to thfhse of MVC-QARXNN that uses
the error-based switching control. It can be conclude that the
proposed switching technique is more effective. The more time

). To test the robust characteristics of the
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— Proposed controller
= = MVC-QARXNN

|

il

uit)

0 50 LLLL) 150 200 250 300 350 400k
I

Fig. 4. Control signals

Proposed comroller

A — - — MVC-QARXNN
05

elt)
C’f-

o \:rv— rl'—: “ b g

0 50 00 150 2000 250 300 350 400
Fig. 5. Tracking error

switch to nonlinear controller, the accuracy of the control
systcn@ill be increased as well. The use of MVC-QARXNN-
based control switghgto linear control longer and more often.

V. Discussion AND CONCLUSION

This paper presents an adaptive controller based on
QARXNN. The emphasis that wiliscuss in this paper is
the improvement of the controller accuracy by reducing the
unnecessary switching to linear controller. First, the principles
of quasi-ARX prediction model is derived. The SDPE is
executed using an embedded system of MLPNN f(al()nlinear
part and using LSE algorithm for linear part. The linear
parameter estimation is then sas bias vector for output
nodes of MLPNN. Second, the tracking error of closed-loop
system is derived via SDPE, the stability analysis of closed-
loop system is performed using Lyapunov stability theory.
Third, the switching line between linear and nonlinear parts of
SDPE is condl.n:d to guarantee boundedness and convergence
of error. The main contributions of this study are: (1) the
successful development of a quasi-ARX neural neﬂork based
adaptive control. It has two advantages, reducing unnecessary
switching to linear controller to improve accuracy and simplify
the switching formula by utilizing SDPE as switching variable.

———— Proposed controller = - = MVC-QARXNN

ity
0 ; Z

0 50 100 150 00 250 300 350 4000

Fig. 6. Switching sequence (0: linear; 1: nonlinear)
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TABLE 1
SIMULATION RESULTS OF THE CONTROL SYSTEMS

Controllers Network RMS
Parameters error
Proposed Controller 36 0.0602
SPC [14] 24 0.0866 *
Fuzzy-based GPC [14] 0.1192 #
MVC-QARXNN [I1] a 0.1271
GPC [14] 0 0.1649 #
# The results are listed in the original papers.

(2) the successful application of QARXNN based adaptive
predictive control for nonlinear system mixed with noise.
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