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Abstract: In this paper, an improved fuzzy switching mechanism based on Quasi-ARX neural network (NN) is presented for
the adaptive control of nonlinear system. The proposed improved fuzzy switching adaptive control is composed of a quasi-
ARX NN based prediction model and an improved fuzzy switching mechanism using two new adaptive control laws. The
obtained quasi-ARX NN model is divided into two parts: linear part and nonlinear part. The linear part is used to ensure the
nonlinear control stability, and the nonlinear part is utilized to improve the control accuracy. The linear controller is obtained
based on the linear part, while the nonlinear controller is given based on the quasi-ARX NN model. As the control result of
nonlinear predictor is better than the linear predictor in most of time, the adaptive control with a simple switching mechanism
has many useless switching during the processing. So the improved fuzzy switching mechanism is proposed to replace the
original switching mechanism, it can improve the performance by reducing the useless switching while guarantee stability of
the system control. The simulations show efficiency of the proposed control method satisfies in stability, accuracy, and
robustness.
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1 INTRODUCTION
Adaptive control of complex nonlinear dynamical

systems has attracted much attention and developed
significantly during the last few decades. Many adaptive
control methods have been proposed, and the corresponding
stability and convergence have been proved [1-4].

However, the stabilizing adaptive control of dynamical
systems is a difficult problem because the plants are always
nonlinear in practical dynamical systems. Hence, the
performance of linear control models can not satisfy the
requirement. For this reason, some nonlinear prediction
models have been developed for nonlinear systems to
overcome the difficulty in design of predictor and controller
for nonlinear systems. Until now neural networks have been
used to identify and control nonlinear dynamical systems
because of its ability to approximate the arbitrary mapping
to any desired accuracy [5-6].

However, from the view of a user, there are two major
problems on those neural network models. The first, one is
that their parameters do not have useful interpretations. The
second, they do not have a friendly interface for controller
design and system analysis. To solve these problems, in the
previous work a quasi-linear black box modeling scheme
has been proposed based on well-developed linear system
theory and could be extended to nonlinear systems. The
models consisting of two parts: a macro model part and a
kernel part [7-8].

The macro-part is a user-friendly interface constructed
by using the specific knowledge and the characteristics of
network structure; the efforts of this part are to introduce
some properties favorable to certain applications, such as
controller design. In this paper, ARX model structure is

chosen as macro model part because of various useful
linearity properties. This macro structure makes the
proposed controller can be obtained and used easily.

Moreover, the kernel part is an ordinary neural network,
which is used to parameterize the coefficients of macro
model and different from a nonlinear ARX model based
directly on neural networks. Because of the nonlinear
characteristics, the quasi-ARX neural network can be used
to identify and to control nonlinear systems accurately. In
the control system, the prediction model and controller
share are the same parameters as in linear cases.

However, there are two problems for this nonlinear
model: the controller design and the stability of
corresponding control system. The controller bases on
these nonlinear models are more difficult to be obtained
than based on the linear models. Stability and accuracy of
the control for nonlinear systems are difficult to be ensured
in one method or one nonlinear model.

Nevertheless, there are some aspects needed to be
improved in the control method, since the 0/1 hard
switching method is not very smooth. By the hard
switching law , the linear and nonlinear predictors are
alternately used, while from the 1/0 switching control result,
it is obvious that the switching control do not need to
switch to 0 in most of time, so a fuzzy switching
mechanism is constructed based on the system switching
criterion function [9].

However, the original fuzzy switching mechanism has
some useless switching problems which influence control
accuracy. In order to solve the switching problems and to
make the switching processing much more smooth, in this
paper the improved fuzzy switching mechanism contained
two new methods: one is to reduce the fluctuate of
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switching parameters, and the other is to design the new
switching law.

This paper is organized as follows. Section 2 briefly
describes the problem to be solved and the improved quasi-
ARX prediction model is introduced based on a neural
network by using an improved switching mechanism, then
the parameter identification methods are given. Section 3
discusses the stability of the adaptive control with the
improved switching mechanism. Section 4 provides the
numerical simulations to demonstrate the effectiveness of
the proposed method, and Section 5 presents the
conclusions.

2 ADAPTIVE CONTROL USING IMPROVED
FUZZY SWITCHING MECHANISM

2.1 Problem description
Consider a single-input-single-output (SISO) nonlinear

time-invariant dynamical system with input output relation
as

(1)

(2)

where y(t) denotes the output at time t (t = 1, 2, ...), u(t) the
input, d the known integer time delay, ϕ(t) the regression
vector, and n, m the system orders. g(.) is a smooth
nonlinear function, and at a small region around ϕ(t) = 0,
the value of Co is continuous. The origin is an equilibrium
point, then g(0) = 0. Now the following assumptions will
be used:

Assumption 1 :
(i) g(.) is a continuous function, and at a small region

around ϕ(t), it is Co continuous;
(ii) there is a reasonable unknown controller which may be

expressed by ¦���� � ���� , where ��� = [y(t) …
y(t-n)u(t-1)…u(t-m)y*(t+1)…y*(t+1-l)]T (y*(t) denotes
reference signal);

(iii) the system has a global uniform asymptotically stable
zero dynamics.

2.2 Quasi-ARX neural network
The elements of �(p(t), q(t)) are unknown nonlinear

function of p(t) and q(t), which can be parameterized by
neural-fuzzy networks and neural networks as in Refs [8]
[10]. In this paper, a neural network is chosen which can
deal with higher dimensional problems. Parameterize �p

with a MIMO neural network, the quasi-ARX prediction
model is expressed by:

(3)

where n =W1, W2, B, θ are the parameters set of the neural
network.

The W1 r RMxN, and W2 r RMx(N+1) are the weight
matrices of the first and second layers, while B r RMx1 is
the bias vector of hidden nodes. The s r R(N+1)x1 represents

the bias vector of output nodes, and m is the diagonal
nonlinear operator with identical sigmoid elements � (for
example: §�¨� � � �

� � . Moreover, p(t) is the input
variables of neural network.

Then we can express the quasi-ARX neural network
prediction model as:

(4)

According the switching parameter q(t), the quasi-ARX
neural network predictor model is different from the
conventional quasi-ARX model. When q(t)=1, the
nonlinear prediction model can insure the prediction
accuracy. In addition, when q(t) = 0, the linear prediction
model can insure the control stability.

In this way the quasi-ARX prediction model uses only
one model to achieve function of two or more models. The
following assumption will be used to analyze the control
system stability:

Assumption 2:
(i) The linear parameter	s lies in a compact region B;
(ii)The nonlinear term �T.W2m(W1p(t)+B) is globally
bounded, i.e. �T.W2m(W1p(t)+B) < 
.

2.3 Controller design
To control a given system, the controller design

includes two steps: the first step for identifying the
improved quasi-ARX prediction model; and the second step
for deriving and implementing control law.

This paper obtained the identified improved quasi-ARX
prediction model from above parts, expressed by:

(5)

where , will
be used in controller design.

Consider a minimum variance control with the criterion
function as follows:

(6)

where t is weighting factor for the control input.
The controller can be obtained by solving:

(7)

In the case where a conventional neural network is used
as a prediction model, a controller can’t be derived directly
from an identified model because of the nonlinearities.

However, the improved quasi-ARX neural network
model is linear in the input variable u(t).

Therefore, a controller is derived from the proposed
model:

(8)
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where the controller parameters © � and ª � come from
the predictor.

Fig. 1 Switching control structure based on quasi-ARX
model

The Fig. 1 shows the adaptive switching controller
based on the improved neural network prediction model for
unknown nonlinear systems. The switching parameters c(t)
is is calculated from input and output signals and model
errors, then is used into the identified model and controller.

The proposed control mechanism has several distinctive
features:
(1) it is linear for the variables synthesized in control

systems;
(2) the parameters have explicit meanings;
(3) it uses one controller which combines a switching

algorithm;
(4) with the improved switching mechanism, it improves

the accuracy;

2.4 The improved switching mechanism
According to the original fuzzy switching mechanism

control, the switching parameter is fluctuant so that there
still have some unnecessary switching problems.

After analyzing the control processing, there are still
exist some problems:
(i) Since the control result of nonlinear predictor is better

than the linear predictor in most of time, in order to
improve the accuracy, it is better to remain nonlinear
predictor while ensuring the stability of the control.

(ii) By updating of linear parameters, the errors of the
predictor e1 and e2 change a lot, so the stability of
control system is proved. In order to improve the
accuracy of the control result, we may not only consider
a single q(t), but also the tendency of q(t). In this way,
we can reduce the unreasonable switching occurred by
the unstable J1(t), J2(t).

(iii) The switching control method is used to guarantee the
stability of control system with the switching between
linear and nonlinear model. But J2(t) is bounded in
most of time, so there are so many useless switching in
original fuzzy switching method.
Motivated by the reasons mentioned before, in this

paper, the improved fuzzy switching mechanism is
designed to increase the control accuracy with two
methods:

Method 1 : Moving average filter
In order to make the switching control more smoothly,

the first improved method adds a moving average filter in
the switching parameter q(t), with the preset threshold
parameters k and K to improve the accuracy and the
adaptation in the controller by reducing the unreasonable
switching in the control process.

(9)

Method 2 : New switching law
As mentioned before, in order to ensure the stability of

the control system, the switching mechanism should firstly
consider the error of nonlinear predictor, while the linear
predictor error e1(t) is globally bounded. Furthermore the
nonlinear predictor is bounded in most control processing.

Motivated by this condition, the switching law is
designed in order to make the switching mechanism
remains in nonlinear predictor as much as possible.

The other goal of the design is to improve the control
accuracy in the nonlinear predictor which has better
performance than the linear predictor.

3 STABILITY ANALYSIS
In this section, the proof that all the signals are bounded

will be given. This is the basis for using multiple models to
improve performance while maintaining stability.

Theorem: For the system with adaptive controller, all the
input and output signals in the closed-loop system are
bounded. Moreover, the tracking error of the system can
converge on zero when a properly neural network is
determined.

Proof: Firstly, the model error e(t) is defined by:
(10)

Subtracting s0 from both sides and gives:

(11)

where s˜(t) = sˆ(t) - s0 and u(t) = y(t +d)-v(t)T sˆ (t).
Consider the following functional:

(12)

then it can be obtained that:

(13)
From 2ab w xa2+b2/x��x, the following inequality holds:

(14)
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Two conclusions can be drawn from inequality (14):
(1) Since a(t) = 1 for |e(t)| > 2
 and is 0 otherwise, ||s˜(t)||2

is a non-increasing sequence. Hence sˆ(t) is bounded.
Moreover;

(2)
(15)

and hence,
(16)

The proof that all signals are bounded is by contradiction.

Proof: Assume that y is unbounded. Then,
1. By certainty equivalent, u(k) is always chosen such that

yˆ(t +1) = y*(t +1), and therefore
e(t) = yˆ(i)-y(t) = y*(t)-y(t)

Since y*(t) is bounded, we have
e(t) ~ y(t)

or e(t) grows at the same rate as y(t).
2. By the assumption that the system has an

asymptotically stable zero dynamics, i.e., any input
sequence u(t-1) cannot grow faster than the output
sequence y(t), then we have

u(t -1) = O[y(t)]
Since

}(t) = [y(t)…y(t-n+1)u(t)…u(t –m-d+2)]T

it follows that
}(t) = O[y(t)]

or, }(t) is not grow faster than y(t).
3. By the adaptation law [6],

e(t) = o[}(t)]
or e(t) grows slower than }(t).

4. Therefore, from the adaptation law [8] [11][12],
y(t) = o[y(t)]

or, y(t) grows slower than itself.
This cannot happen if y(k) is assumed to be unbounded.

Therefore y(k) is bounded, and the boundedness of other
signals follows in a straight forward fashion.

It is seen from the proof that the characteristics of the
identifier is follows e(t) = o[}(t)]. The identification error
grows at a lower rate than the regression vector, plays a
central role.

So when multiple models are used, the objective of the
switching mechanism is to maintain this relationship. This
will be demonstrated in the next section.
As J1 is bounded with the Eq. (16), and with the improved
switching mechanism, we need to prove all the signals in
the closed-loop switching system described above and
bounded with J2 in two cases:
(i) J2(t) is also bounded. By the equation

holds and similar to the boundedness proof of e1(t), the
error e2(t) is also bounded. Since the control error e(t) =
(1-q(t))e1(t)+q(t)e2(t), where q(t) r [0,1], therefore e(t)
is bounded.

(ii) If J2(t) is unbounded, we will discuss the stability of the
two new method separately;

Method 1: Moving average filter:
Since J1(t) is bounded, from the equation of switching

function Ji(t) and the moving average filter with switching
parameter q(t), there is exist a constant tk such that �t > tk,

q(t) = 0, so that the control error e(t) = e1(t) is bounded with
e1(t).

Method 2: New switching law:
Since J1(t) is globally bounded, and J2(t) is smaller than

max(J1(t)), we can consider J2(t) is bounded with J1(t) and
prove the stability same as case (i). In addition, while J2(t)
is larger than max(J1(k)), where J2(k) is bounded or not, we
can calculate switching parameter q(t) with the fuzzy
switching control equation in the new switching law. This
condition is also exist in a constant tk such that �t > tk, q(t)
= 0, so that the control error e(t) = e1(t) is bounded with
e1(t).

With the improved switching mechanism, from above
inequalities, the input and output of the closed-loop
switching control system are bounded.

4 NUMERICAL SIMULATIONS
The reference output of this example is shown as:

(17)

where r(t) = 1.2*sin(2~t/25), and the parameters of
switching criterion function are chosen to be c = 1.2, N = 3.
Then, we can get the control result with different method:

Fig. 2 Control result of 1/0 switching mechanism

From the control processing, we find that with the
original proposed switching mechanism, the switching
processing is not smooth as the switching parameter χ(t)
when changes a lot.

This condition causes the useless switching problems as
the red circle showing in Fig. 2 and Fig. 3. Moreover, while
using the improved switching mechanism with the two new
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proposed methods, M = 5, [ζ��	ζ��	ζ��	ζ��	ζ�] = [1, 1, 1, 1, 1],
k = 0.1, K = 0.9 we can get the control results as follows:

Fig. 3 Control result of original fuzzy switching mechanism

Fig. 4 Control result of fuzzy switching mechanism with
filter

From the control result in Fig. 4 and Fig. 5, we find that
by improved the fuzzy switching mechanism, the adaptive
control can reduce the useless switching with the switching
parameter q(t) and remain in the nonlinear control as much
as possible.

In this way, the control processing is smoother and can
improve the control performance with the reference signal.

The control performances of the proposed switching
mechanism become much better when the reference signal
has more linear properties.

Comparing the different control results with root mean
squared error (RMSE)

(18)

Fig. 5 Control result of fuzzy switching mechanism with
new switching law

Table 1 Control result with RMSE

From the control error in Table 1, it is obvious that the
improved switching mechanism improve the control
accuracy when comparing with the original method.

5 CONCLUSIONS
In this paper, the quasi-ARX neural network is divided

into two parts: the linear part used to ensure the nonlinear
control stability, and the nonlinear part utilized to improve
the control accuracy. In order to combine both the stability
and universal approximation capability in the controller, a
switching law is established based on system input-output
variables and prediction errors. An adaptive control law is
proposed for nonlinear dynamical systems and then the
control system stability is proved.

In such a way the adaptive switching control mechanism
can satisfy the stability, response and performance
requirement with only one model used. By the hard
switching laws used, the linear and nonlinear predictors are
alternately used. However from the 1/0 switching control
result, we can find that the switching control does not need
to switch to 0 in most of time so that we can design the
fuzzy switching to improve the control result.

According to the control processing, we find that the
original fuzzy switching mechanism is not smooth enough
by updating the linear and nonlinear predictor. Hence, in
order to improve the performance of the switching control
an improved switching mechanism is designed with two
methods: one improves calculation of switching parameters
and the other design a new switching law. The switching
mechanism has compared in the simulations, and the
improved fuzzy mechanism with both methods increases
the control accuracy by solving the useless switching
problem while ensuring the control stability.
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