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By itself, a wind turbine is already a fairly complex system with highly nonlinear dynamics. Changes in wind speed can affect
the dynamic parameters of wind turbines, thus rendering the parameters uncertain. However, we can identify the dynamics of
the wind energy conversion system (WECS) online by a quasi-ARX neural network (QARXNN) model. A QARXNN presents a
problem in searching for the coefficients of the regression vector (input vector). A multilayer perceptron neural network (MLPNN)
is an embedded system that provides the unknown parameters used to parameterize the input vector. Fascinatingly, the coefficients
of the input vector from prediction model can be set as controller parameters directly. The stability of the closed-loop controller
is guaranteed by the switching of the linear and nonlinear parts of the parameters. The dynamic of WECS is derived with given
parameters, and then a wind speed signal created by a random model is fed to the system causing uncertainty parameters and
reducing the power that can be absorbed from wind. By using a minimum variance controller, the maximum power is tracked
from WECS. From the simulation results, it is observed that the proposed controller is effective in tracking the maximum power
of WECS. © 2015 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
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1. Introduction

Concerns about both environmental damage caused by buming
of fossil fuels and extreme fluctuation in oil prices have aroused
worldwide interest in using alternative energy sources [1.2].
Among these sources, wind energy is a very promising and
abundantly available alternative. Clean renewable energy sources
(i.e. wind, photovoltaic (PV), and fuel cells) do not cause global
warming, and according to the estimates by the European Wind
Energy Association, tapping only 10% of available wind power
can sufficiently meet the world’s total electricity needs. Given the
current technological advances in the field of power electronics,
variable speed drives, and wind turbines. the cost of wind power
can approach that of maintaining fossil-fuel power plants. The
United States and Germany are world leaders in terms of using
wind energy’s installed capacity (25 GW), while in terms of the
use of wind energy, Denmark reports the highest percentage, which
is 20% of the total energy use. Though wind energy currently only
accounts for 1% of all generated electricity, this figure is expected
to rise to 20% by 2030 [2].

The control system plays an important role in extracting the
maximum energy from wind. Maximum power point tracking
(MPPT) control operates by varying the speed of the generator so
that the turbine can operate at the point of r.ximum acrodynamic
efficiency and, in turn, obtain maximum power extracted from
wind [3]. The amoun@bf power that can be converted depends on
the MPPT accuracy, which is highly influenced by the accuracy
of the control system. The controller is intended to maximize the

* @prrespondence to: Jinglu Hu. E-mail: jinglu@ waseda.jp

# Graduate School of Information Production and Systems, Waseda Univer-
sity, Hibikino 2-7, Wakamatsu-ku, Kitakyushu-shi, Fukuoka 808-0135,
Japan

*# Politeknik Perkapalan Negeri Surabaya, Jalan Teknik Kimia Kampus
ITS Sukolilo, Surabaya, Jawa Timur 60111, Indonesia

power output of the turbine, regardless of the type of generator
used.

The issues involved in the design of a nonlinear controller for
MPPT concern the robustness of parameter uncertainty since the
parameters are always subject to change according to the change
of wind speed [4]. In conventional linear controls for robustness,
increasing robustness can reduce the accuracy of the control system
[5,6]. Several approaches have been developed to solve the control
problems associated with wind energy. An adaptive neural network
model-based estimator has been developed to estimate uncertain
aerodynamics online, after which a tracking control law can be
derived based on Lyapunov stability analysis [7]. The wind energy
conversion system (WECS) can also be modeled as a linear system
by using alinear parameter estimator (LPE), in which the controller
uses a hybrid control unit of the linear quadratic Gaussian (LQG)
and neurocontroller (NC) ormed by a feed-forward radial basis
function (RBF) model [8]. However, as we know, fuzzy systems,
neural networks, and neurofuzzy systems are bladbox models.
The stability analysis of these models is difficult, and parameter
tuning is generally a time-consuming process due to their nonlinear
and multiparametric nature [9,10]. Among other drawbacks, LQG
controllers designed with an LPE estimator also require additional
estimation schemes using neurocontrol for S'Emh w.1 parameter
uncertainties, In this paper, we propose a quasi-ARX neural
network (QARXNN) prediction model to estimate the parameters
of the input vector, and by performing the minimum variance
control law, the estimated parameters are set as the controller
parameters with the switching law [6].

With QARXNN, we assume that WECS is a nonlinear system
in which nonlinearity is placed on the parameter estimates. The
estimated parameters have a linear relationship with the regression
vector, which makes it easy to derive the control law from the
proposed model. The linear parts of the parameters are used the
whole time, while the nonlinear parts of the parameters work
under switching function. The use of nonlinear parameters can

© 2015 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
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improve the accuracy of control, but sometimes damage the
control system, so that only the linear parameters work. Nonlinear
parameters will work until the system recovers. To begin with,
a QARXNN model is used to identify a dynamic system online.
The network parameters are updated continuously in accordance
with the sampling time. The trained network weights of QARXNN
are used to estimate the linear and nonlinear parameters by the
next regression input. With a minimum variance controller law,
the controller signal is calculated by using the estimated linear
and nonlinear parameters. The stability of the closed-loop control
system is maintained by switching the linear and nonlinear parts;
switching to the nonlinear part maintains accuracy, while switching
to the linear part guarantees stability. Though a QARXNN model
is built by using a neural network, the parameters obtained can be
simplified in the form of regression coefficients. Control signals
can be constructed directly by using regression coefficients.

By performing Taylor series expansions, a nonlinear system
develops a linear correlation between the regression vector and
its coefficients [6]. The coefficients serve as the parameters of
the input vector called kernel functions, which can be executed
by using a multi-input multi-output (MIMO)} model. These also
can be executed by neurofuzzy, wavelet, radial basis function,
and multilayer perceptron neural network (MLPNN) [11]. The
accuracy, stability, and the speed of convergence can be improved
with Lyapunov training [12]. The QARXNN can also be used to
identify the linear system with more accurate results than those
achieved by using the technique of recursive least squares error
identification [13]. The contributions of this paper are as follows:
(i) the modeling of WECS with uncertainty parameters is derived
by wind speed signal under an autoregressive moving average
(ARMA) model with random process; (ii) a QARXNN is applied
to model and predict WECS dynamics online with emphasis on
the search parameters of the input vector; (iii) with the minimum
variance controller law, a controller signal is derived by QARXNN
prediction model using linear and nonlinear parameters with the
switching.

2. Dynamic Modeling of WECS System

2.1. Wind speed modeling  Electrical energy generated
by wind power plants in any region heavily depends on the
characteristics of the wind in that region. There are many ways to
model the wind speed as a basis to evaluate the power systems. One
way uses the ARMA model by generating a random signal denoted
as ARMA(p,q), in which p refers to the order of autoregressive
signalsgind ¢ to the order of the moving average. The ARMA
mode! created for the Swift Current site in Saskatchewan, Canada,
based on data for the period from 1996 to 2003 appears in the
following [14]:

s(t) = L1772s(r — 1) + 0.1001s (t — 2) — 0.3572s(r — 3)
+0.0379s5(r — 4) + v(1) —0.5030v(r — 1)
—0.2924v(t — 2) + 0.1317v(t — 3)

v(1) € (0,052476%). ()

The simulated wind speed at hour ¢, designated as V (r), can be
calculated as follows:
V() = pult) +alr)sir) (2)

w.re fe(t) is the mean observed wind speed per hour, and o (f)
is the standard deviation of the observed wind speed per hour.

2.2. Dynamic modeling of WECS  The power captured
by a wind turbine is given by

P, = 0.5pmCp(, B)R*V? )]
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where p is the air density (typically 1.25 kg/m?), R is radius of
blades (m), Cp(4, 8) is the wind turbine’s power coefficient, and
V' is the wind speed (m/s). The coefficient Cp(2, 8) depends on
the pitch of th(.:lade.v. B (in degrees) and the tip-speed ratio 4.
Tip-speed ratio is defined as the ratio of the linear velocity of the
blade tip to the wind speed described as follows:
ayR
v
where «; is the wind turbine shaft speed (rad/s).
The relation between Cp and A for a three-blade, horizontal-axis
.ind turbine for various blade pitches § is illustrated in Fig. 1. The
curves have been obtained by plotting (5), which is commonly used
in wind turbine simulators [15]:
116
Ai

4

Cp(i, B) = 0.5176(— — 0.48 — 5)e~2'"* 4+ 0.0068%

(3
[ 1 0.035
A A+00088 BI+1
.gure 2 shows the subsystems interconnected to WECS, which
consists of the wind turbine, the drive train, and the generation
unit.

The objective of the proposed control is to maximize the
power that the turbine extracts, which can be achieved if Cp
is maximized. To maximize Cp, A must be kept constant at its
optimum value regardless of the wind speed. Figure 3 illustrates
the steady-state power—speed characteristics (i.e. solid curves) and
the maximum power point curve (i.e. dashec.:urvc) attained for
each wind speed at a pitch angle of (”. The aerodynamic torque
on the wind turbine rotor can be obtained by using the following
relations:

(6)

Py prCp(i, BRPV?

Ty = Y

(N

€y
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The proposed MPPT technique seeks to retrieve the optimal
rotor speed e, (i.e. the speed corresponding to the maximum
generated power) for any instantaneous value of the wind speed.
Note that in Fig. 2 the external inputs of the dynamic WECS are
the set points of generator torque 7, s, the desired pitch i, and
wind speed signal V. The outputs of WECS can be measured as
presented by the turbine rotor speed w,. The desired pitch is the
optimum .ch obtained from an aerodynamic turbine characteristic
with the maximum power coefficient, which can be interpreted
as the setting of the pi.1 position that extracts the maximum
power from wind. The wind speed signals are fluctuating, and
can be assumed as a disturbance signal affecting the uncenai'r
parameters of the WECS dynamics. The WECS dynamic can be
described as follows:

f = — o, (8
Joty (1) = K6 + Bywy, — Bywy + Ty (wgaly ref ) ()]
Jpaoy (1) = —K;0 — By + Bywy + T, (B, V) (10)

The generator torque 7, is a nonlinear function, with the
generator speed w, and the reference electromagnetic torque Ty pr
as variables. The generator usually operates in the linear region of
its torque characteristics, which can be approximated into a linear
form as

Ty = Bywy — Ty ey (1D

The pitch actuator is modeled as a first-order dynamic system with
saturation in the amplitude and derivative of the pitch £ as [8.15]

. =1 I
B==F+ by (12)

Figure 4 shows the dynamic of the WECS model described in

3-8
The control system acts to control the blade pitch position in
order to maximize the power extracted from the wind, with the

reference electromagnetic torque T, .. set as constant. The sys-
tem parameters are given as follows [4]:

Turbine and drive train parameters

R =30.30m, K, = 15.66 x 10° N/fm, Bs = 30.29 x 10* N.ms/rad,
J; =83.00 x 10* kg.m?

Geneg@or parameters

B, = 15.99 N.ms/rad, J, = 5.9 ke.m?

Pitch actuator

T = 100 ms.

3. Control Strategy

To control the WECS, the 'nlmller is designed in two
steps. The first step involves the identification and prediction of
"ECS by using the QARXNN model, while the second involves
deriving and implementing the control law-based prediction model.
Figure 5 sh0.< an adaptive controller based on the QARXNN
model. The turbine speed is operated at the MPPT point by
controlling the pitch blade position, with the generator torque
assumed to be constant.

3.1. System identification  Through performing Taylor
series expansions [6,12], the nonlinear continuous function can be
presented as

¥(t) = yo + P(6) R(p(1)) (13)

where N (1)) = [dfs) - - Quy.0) b1y - - Biag))” are the Taylor
coeffidlnts; ¢p(r) € R"="«"" denotes the input vector with ele-
ments (1) = [=y(t = D=yt —n) ult == ult = n)";
and n, and n, represent the orders of time delay in the
input—output data. R(¢ (1)) € R"="« " denotes a kernel function
that is used to give the coefficients of the input vector. In our main
theory, the following assumption are made:

Assumption 1. The pairs of input and output of the training data
are bounded.

Assumption 2. The input and output of the nonlinear function
N(gh (1)) are bounded.

By performing Taylor series expansion, wc.cvclop the non-
linear system presented as a liear correlation between the input
vector and its coefficients. If the system modeling represents a
plant that is a linear system, the coefficients obtained will be con-
stant: otherwise, if the system modeling represents a plant that is
a nonlinear system, the obtained coefficients will be a function
of time [13]. A QARXNN .udel puts nonlinear function into the
coefficients of inpu!ecmr as follows:

Y, @(1)) = by yult — ‘ + oo by, et —ny)
—aupyt — D= —apnylt —n)  (14)
Model %
parameters ;

Qua.si:.'i'ﬁRX f::',

modé]
Specifications k
design "
Dela
Controller upcrut{)r Vo (Terr
paramdters
Dy A Nonlinear dynamic @,
Controller I of WECS
K

Fig. 5. MPPT controller of WECS based on the QARXNN
prediction model
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Fig. 6. Quasi-ARX neural network with MLP network as embed-
ded systems

Figure 6 illustrates the scheme of system identification and pre-
diction by QARXNN model.

The input vector is us@ as the input for an embedded system
.’nstrucled by MLPNN with a three-layer neural network. The
number of input layers, hidden layers, and output layers is the
same an.is equal to n. A QARXNN model incorporating neural
network can be expressed as

yit.¢(r) =¢(1)TN(‘!)) (15)
Rg(1) = Wal'Wi(g(1) + B) + 6 (&D)

where © = {W), W2, B.0). Wi € R™ Wy € R"™ B € R"™" are
the weights matrix in the first layer, second layer, and bias vector
of hidden nodes. The linear parameters of # € R™' is searched
by applying the least square error (LSE) algorithm, which is set
as a bias vector of the output nodes for an embedded system of
MLPNN. The symbol I' is the diagonal nonlinear operator with
idemic'sigmoidal elements on the hidden nodes.

The learning algorithms of the QARXNN modcl'xecuted in
the two steps are: (i) the LSE algorithm is used to update &
and then is set as bias vector for MLPNN: (ii) perform the
backpropagation (BP) error algorithm for an embedded MLPNN.
By using the two algorithms, we introduce two submodels
incorporating a linear submodel and a nonlinear submodel as
follows: z;(k) = y(r,¢ (1)) — p(t)" [W2 (k)T W, (k) ((2) + B(k))]
and z, (k) = y(r, (1)) — ¢ (1)Ta(k), where k denotes a sequence
lcami. number. The learning algorithms for a QARXNN is exe-
cuted step by step as follows:

1. set k = 0 for initial conditions, #(k) = 0; and small initial
values to W,(k), Wa(k), and B(k), then set k = 1, where
k is the learning number.

s, .zlcu]ate zi(k), then estimate @(k) for by using the LSE
algorithm.

3. calculate z, (k), then estimate W, (k), W(k), and B(k). It
is realized by using the well-known BP algorithm.

4. use (16) to update ¥(¢h(1)).

5. stop if prespecified conditions are met; otherwise go to Step
2, and repeat the estimation of @(k), Wy(k), Wa(k), and
B(k), setk =k + 1.

If the model in (15) is sufficient to model the input—output
training data of the system, Assumption 1 and Assumption 2 are
fulfilled, and then the outp. at (t + d) can be predicted. To obtain
the predicted output, (15) is regressed at time (1 + d) described as
[6.13]

y(t +d) = basrault +4'— D+ +
By aaye(t — iy +d) — ﬁ(l.d:}'[f B+ d)

— s =By yE =y + d) (17)

37

where (¢ +d)=[v(t +d -1yt +d -2 BB +d -n)
u(r — D) u(t +. —2)---ult+d —n)|" is d step ahead of
the input vector. &(c,t(r +d)) and [G(1ed) - Qing s +d) 5(|,;+d]
. -5(,."‘,.,.‘;]]7 are the estimated parameters of the nonlinear part by
MLPNN and its elements, respectively. For online step-ahead pre-
diction,  is equal to 1. The estimated coefficient of the input
vector is calculated by ugllg an embedded MLPNN with the
next input vector of d = 1 by ¢p(t + 1) = [y(£) y(t — 1) -yt +
L —n)u(t)ult —1)---ult+1— m,)]". With the next regression
vector, the estimated coefficients are calculated by

R(p(r + 1)) = WaTW (¢t + 1) + B) +6 (18)

By considering (18), we can see that the QAR.\JN model consists
of the estimated linear part of the parameter & and the estimated
nonlinear part of parameter ®(g¢(r + 1)).

3.2. Controller design A QARXNN model is(fjnproved
to guarantee closed-loop stability of the control system expressed
as

(19)
(20)

g = o R0, x (1))
R(p(1), x (1) = X(OWLTW,(p(t) + B) +6

where Wal'W, (¢ (1) + B) +6 is the estimated parameter of the
nonlinear part, and & denotes the estimated parameter of
in the linear part that is used as a bias vector in the output
nodes. Obviously, by introducing the switching function x(r),
the improved QARXNN model is different from the conventional
QARXNN model. When x(t) = 1, it is a nonlinear prediction
model, which can ensure prediction accuracy. And when x (1) = 0,
it is a linear prediction model, which can ensure control stability
[5].

'l& linear part error and the nonlinear part error, respectively,
are defined as follows:

at) =g —(r)'h @2n
ex(t) = y(1) — ()" R (1))
=y(0) — p)7d
— ¢ WaT Wy (b(t) + B) (22)
Then # is updated as
Aoy _ A a(tygp(t = e (1) 5
g = 6@ 1)+—]+¢U a1 (23)
L if e =24
xS { 0, otherwise @4

Similar to those in Refs [5,16,17], the switching criterion function
is described as follows:

o a)les (D] —4a%)
=L 5 g0- D76 — 1)

=1

+o Y (—a@)ledIi=1,2

(25)
I=1—-N+1
R TACEYAG,
x(-')—{ 0, otherwise (26)

where i=1 denotes the linear adaptive minimum variance con-
troller, and /=2 denotes the nonlinear adaptive minimum variance
controller. The value of A is determined by the designer, where
&< @p(DR(P (1)), N is a positive integer, and ¢ = 0 is a predefined
constant. Switching theory and stability analysis of the closed-loop
system can be studied more clearly in Refs [5,16-19].

IEET Trans 10: 368-375 (2015)




M.A. JAMI'IN, I. SUTRISNO AND J. HU

A minimum variance controller is proposed, which defined as
follows: .

1 A
M@ +1)= (50’(1 +d)—y*e +d)’ + EH(I)I) (27

where A is the weight of the control input, d is a differential
operator which equals 1 for online step-ahead prediction. The
controller can be obtained by solving

aM (1 +1)
du -

A QARXNN is used to model WECS online. The controller signal
calculated by solving (28) is difficult due to nonlinearity and the
multiparametric model. Fonunatcl. a QARXD. model can be
simplified by a linear correlation between the input vector and
its coefficients. The controller is linear with respect to the input
variable u (). Therefore, a controller is derived from simplified
QARXNN model [5,6]. By adapting the input vector, the control

0 (28)

law is modified as follows: .
by . &
= ()= b(g", — 1l
ul(t) bf(f)+l( 1) = blg™ ¢ thglult — 1)
+ 5+ D —alg oy (29)

The controller is designed in two steps: (i) identifying the sys-
tem using the QARXNN model, and (ii) designing a controller by
using the parameter estimation that has been done in the first step.
Theorem: For a system expressed in (19) using an adaptive min-
imum variance controller, (29) and all the input—output signals in
the closed-loop system are bounded. Moreover, the tracking error
of the system can converge to zero when a proper neural network
is determined.

Proof: First, thgamodel error e;(r) is defin S
e () =h9m = @O S(@(). x (1) Z!(r) —¢m'o
- X Wl Wi ($(1) + B) (30)
Then subtracting 6y from both sides of (23), we get
d=0@- |
_aga=D@a =16 =1 - @)

- 31
[+ o0 ghTde= @D
where 8 = 8(1) — 6y and 8(1) = y(1) — p()7 6 ().
Consider the function
o2
v =[éo)| (32)

Then, noting that a(f)=0 or 1, and combined with (23) and (24),
we can get
2a(r)(e; {:Jl 8(1))e; (1)
1+¢t—DIpt=1)
a@’e ¢ GH"eG — Dei 1)’

I+ =DT¢u=1)*

al(®2e;(1)8(1))

14+¢t=DTgp@=1)
alt)e (1)

— 33
1 +¢(t=DT¢(t—=1) B

from 2ab < Ca® 4 b*/C,YC, the following inequality holds:

Vin=Vi-1 -

1A

Vir—1)+

a()e;(02/2 4 28(1)%)

L+t — Dig(t — 1)
a(t)e; (1)

T 1+t —-DTg—1)

Vin=Vi-1+

2a @ A2

1+t — DTt = 1)
1 a(t)e; (1)?
214+ ¢ — DTt — 1)

V(1) is a nonincreasing sequence bounded by zero. Moreover

<Ve-D+

(34)

N 2 2
‘ a(r)(e;(1)? —4A%)
N'ﬂ‘lc; 2 HPu-Digu-1) ©3)
and
a(:)(e,-ul— 442y sy (36)

N0 201 + ¢t — [l D)

The stability of the closed system wia the switching technique
for the adaptive minimum variance controller can be described as
follows: Jy(r) is always bounded by (24) and (35). J2(r) has two
cases:

1. J2(r) is bounded; so the model error (1) is bounded and
satisfies (36).

2. J1(1) is unbounded, since J,(1) is bounded. So there exists
a constant fy such that x () = 0,¥r = tp. The model also
has bounded error e(r).

From above inequalities, the input and output of the closed-loop
switching control system are bounded. The linear control system
is always bounded. If a proper nonlinear model is chosen and the
accurate parameters igshdjusted, the nonlinear control error e;(t)
can converge to zero. The model only with linear parameters has
to work until the use of nonlinear parameters does not disturb
the stability of closed-loop system. Therefore, the controller using
linear parameters @ will work all the time, but with the nonlinear
parameters 8(¢ (1)) it will work under the switching sequence.

4. Simulation and Results

The proposed MPPT control strategy is applied to arrange the
pitch of blade g in order to track the angular velocities of a turbine
operating at the MPPT point. Wind.peed is generated by an
ARMA model shown by Fig. 7; the mean observed wind speed
of p(t) = 12 m/s and the standard deviation (SD) of the observed
wind speed of o(r) = 1.5. The simulation results are shown in
detail in Figs 7-13. In order to obtain the maximum output of
power from a wind turbine generator system, it is necessary to
drive the wind turbine at an optimal rotor speed for a particular
wind speed.

An embedded system is constructcd.y MLPNN with a three-
layer neural network. The input vector ¢b (1) is selected by ¢ (1) =
=Dyt =2y =3yt =4 ult — Dt —2) ult —3)|”
with n = 7 equal to the sum of n, =3 and n, = 4. The number

Wind velocity (m/s)

Time (s)

Fig. 7. Wind speed
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of input nodes, hidden nodes, and output nodes is also the same
as 1. The parameter of the switching criterion ¢=1.2 and N=3. By
using TS fuzzy model with parameter uncertainties [4], the param-
eter (stiffness, damping, and moments of inertia) of the WECS
is considered as the uncertainty parameter. It is presented by a
nominal parameter (fixed) and an uncertainty parameter (noise).
In this paper, the WECS system is modeled under the QAXNN
model. The parameter consist of two parts: (i) nonlinear parame-
ter Wal'W(¢h(1) + B), which can be regarded as the uncertainty
parameter executed by MLPNN, and (ii) the linear parameter 6.
Linear relationship between the parameter and the input vector
makes it easy to derive the control law. A switching mechanism is
used to maintain system stability. By performing system identifica-
tion, the parameter of the input vector R(¢(r)) can be estimated.
As we can see, the WECS is a nonlinear system influenced by
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wind speed fluctuation, thus rendering the parameters uncertain or
a time function, as shown by Fig. [ By using the technique of a
minimum variance controller, the control signal is calculated by
using R(gh(1)) set as controller parameter with the switching law.
For better contrast, the snapshot of the part marked in Fig. 8(a) is
shown enlarged in Fig. 8(b).

The control signal shown in Fig. 9 is fed to the WECS system
to track the wind turbine rotor speed, and the result is shown in
Fig. 10. The dot-dash line denotes the speed references w, at the
MPPT operating point, and solid line denotes the output of the
proposed method. The tracking error of the turbine rotor speed
is shown in Fig. 11. The switching function between nonlinear
and linear parts to ensure closed-loop stability and to improve
the control accuracy is shown in Fig. 12. The performance of the
proposed controller is also measured by the root-mean-squared
(RMS) error versus time, as shoﬁin Fig. 13.

Pl [0 — o0

1

RMS = (37)
where y*(1) denotes the reference signal, and y(r) .nntes the
output of the controlled plant. Figure 14 illustrates the WECS
response at the MPPT operating point for the initial conditions
t =08,V = 12.48n /s, power of the MPPT aerodynamic tracking
1.45MW, B = 0", and angular velocity @, = 4.12rad /s. When the
wind speed decreases or increases, the rotor speed of turbine also
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Fig. 14. Tracking MPPT power compared to aerodynamic power.

(a) MPPT power tracking. (b) Snapshot of the part marked in

(a) enlarged. (c) Ratio between the tracked MPPT power and the
aerodynamic power
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Fig. 15. Tracking Cp compared to the characteristic of the turbine

should change in order to keep maximum power of WECS by
controlling the blade pitch ratio S.

If the rotor operates at speed references wy, then the maximum
power coefficient can be achieved. Thus the turbine generator
output is maximum. The result of MPPT power tracking is shown
in Fig. 14. The tracked MPPT power using the proposed controller
is compared to the aerodynamic power in Fig. 14(a). The dot-
dashed line shows the aerodynamic power, and dashed line shows
the tracked MPPT power. To make better contrast, the snapshot
part marked in Fig. 14(a) is enlarged in Fig. 14(b). The accuracy
of the trac MPPT power is shown in Fig. 14(c) presented by
thdatio of the tracked MPPT power and the aerodynamic power.
A ratio of 1 indicates an accuracy of 100%. The performance of
tracking control also can be measured, as shown in Figs 15 and

16. The turbine’s peak performance is achieved with Cp = 0.48.
The dot-dashed line shows the Cp characteristics of the turbine,
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and the dashed line shows the result of the tracked Cp. These can
also be given by Cp versus time in Fig. 16.

In Ref. [4], the resolution of the pitch actuator is 0.1 s. Therefore,
a sampling time of 0.1 s is used for tracking the MPPT control
simulation; so it seems to be high-speed control. However, to
reduce the high-speed control, the sampling time can be changed
and adapted to the real application and to the characteristic of the
existing turbine components.

5. Conclusion

This paper presented an adaptive controller using the prediction
model QARXNN. Based on the result of simulation, a minimum
variance controller based on the QARXNN prediction model was
shown to be effective in tracking the MPPT of the WECS. The
proposed method is executed step by step as follows: (i) The wind
speed dynamic model is adopted based on the ARMA model
by generating a random signal. (ii) The principles of dynamic
modeling of WECS are derived with given parameters, where the
maximum energy that can be extracted from wind is influenced
by the wind speed and pitch of the blades. (iii) The dynamics
of WECS is simulated and identified online using the QARXNN
model. The next input regression vector is the input for an
embedded system of MLPNN to estimate the parameters that
are used directly as controller parameters. The controller works
under switching law to guarantee closed-loop stability. Finally,
the control performance has been confirmed by a simulation and
experimental results. The main contributions of this study are as
follws: (i) the successful development of nonlinear dynamics of
WECS modelling bases wind speed dynamic of ARMA model
with generating a random signal; (ii) the successful application
of the QARXNN prediction model to predict WECS online; and
(iii) the successful application of switching controller based on
QARXNN to track MPPT of the WECS.
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