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Abstract: A wind turbine is already a fairly complex system with highly nonlinear dynamics. Changes in wind speed can
affect the dynamic parameters of wind turbines, thus rendering the parameters uncertain. However, we can identify the
dynamics of the wind energy conv'sg system (WECS) online by self organizing quasi-linear ARX radial basis function

network (SOQARX-RBFN) model. Th

tability of the closed loop controller is guaranteed by the switching of the linear and

nonlinear parts parameters. From the simulation results, it is observed that the proposed controller is effective to track

maximum power of WECS.
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1 INTRODUCTION

There has been increased interest in wind energy since it
is an environmentally friendly and renewable source of
energy. With improved aerodynamic designs and
sophisticated power electronic interfaces, wind turbines are
&pablc of supplying a substantial amount of power.
However, we can identify the dynamics of the wind energy
conversion system (WECS) online by self organizing quasi-
linear ARX radial basis function network (SOQARX-
RBFN) model. [1][2][3]

In this paper. we propose a SOQARX-RBFNN
prediction model to estimate parameters of the input vector,
and by applying the minimum_variance control law, the
estimated parameter is set as th@§kontroller parameters with
switching law. The linear part parameters are used in the
whole time, while the nonlinear part parameters work under
.Jvitching function. The use of nonlinear parameters can
improve the accuracy of control, but sometimes damage the
control system, so that only the linear parameters are
working. Nonlinear parameters will work until the system
recovers. To begin, a SOQARX-RBFN model is used to
identify a dynamic system online [4][5]. The network
parameters are updated continuously in accordance with the
sampling time. The trained network weights of SOQARX-
RBFN are used to estimate linear and nonlinear parameters
by the next regression input. With a minimum variance
controller law, the controller signal is calculated by using
estimated linear and nonlinear parameters. The stability of
the closed-loop control system is maintained by switching
linear and nonlinear parts; switching to the nonlinear part
maintains accuracy, while switching to [$he linear part
guarantees stability. The SOQARX-RBFN can also be used
to identify the linear system with more accurate results than
those achieved by using the technique of recursive least
squares error identification [1][6]]7].
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Thc.:omributions of this paper are: (1) a SOQARX-
RBFN is applied to model and predict WECS dynamics
online with emphasis on the search parameters of the input
vector; (2) with minimum variance controller law, a
controller signal is derived by SOQARX-RBFN prediction
model using linear and nonlinear parameters with the
switching law.

This paper is organized as follows. Section 2 introduces
the SOQARX-RBFN prediction model. Section 3
introduces dynamic modeling of WECS. Section 4
describes numerical simulations to demonstrate the
effectiveness of the proposed approach. Finally, Section 5
presents the conclusions.

2 DYNAMIC MODELING OF WECS

A model for the entire WECS can be structured into
several interconnected subsystem models as shown in Fig. 1.
This system consists of aerodynamics, a drive train, and an
induction generator (1G). Fmally, there 1s the actuator
subsystem that models pitch servo behavior. The IG turbine
is the most important part of this system and hence its
reliability must be guaranteed. The possible faults in this
system include those of the generator speed sensor and
rotational speed of the turbine.
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Fig. 1 Structural diagram of wind power system

The power extracted from the wind can be expressed as [2]
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Pn = D’SP?ICF(Y’ B)R2V3 (1
where £ is constant for fixed pitch wind turbines, is given
byi=Rea/V, and C(Z, s defined by the following
relation[3]:

Cy(A, 8) = (0.44 — 0.01678) sin [ﬂ("]—_” u.::.-'i] @)
b

—0.00184((X — 3)7.

A typical Cp-4 curve is shown in Fig. 2. It can be seen that
the maximum value of Cp (Cpmay =0.45) 1s achieved
forf=0%nd for A=10.20. This particular value of Ais
defined asthe optimal value of tip speed ratio (Aogy ).
Normally, a variable speed wind turbine follows @, = Aoy
I'/R.

05

Cotrmaf 45
04

Fig. 2 Power coefficient versus Tip Speed Ratio

The drive train model consists of a low-speed shaft and a
high-speed shaft having moments of inertia Jr and J; and.
respectively. Its model is given as

gx(*{) = — W
Jran(t) = — K0, — Bowy + Bawe + T(5.V) (3)
J(,'h‘a'(;(f.) = K_.‘H_., + H,w, }.{,Cu‘(; + HU(W(, I:y‘rl‘.f)

where the acrodynamic torque 7'y is given by [4]
e = Py _ prCp(A.B)RV?
" w 24 @
The generator torque 7, is a nonlinear function with the
generator speed @ and the reference electromagnetic
torque 7,y as a variable. The generator usually operates in
the linear region of its torque characteristics, which can be
approximated in linear form as
T¥= Bg(s){; — i‘}&,‘.f(S)
The pitch actuator is modeled as a first-order dynamic
system with saturation in the amplitude and derivative of
the pitch f as [5][6].
=1 1
B= Tﬂ"’ ;ﬁn»r ©)
The control system acts to control blade pitch position in
order to maximize the power extracted from the wind, with
the reference electromagnetic torque 7y ,.; set as constant.
The system parameters are given as follows [2]:
Turbine and drive train parameters
R=3030m, K,=15.66x105N/m, B,=30.29x 102N ms/rad.
J=83.00x104kg.m?

Generator parameters
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B,=15.99 N.ms/rad, J,=5.9 kg.n?*
Pitch actuator
=100 ms.

3 SELF ORG‘NIZING QUASI-ARX-RBFN

To control WECS, the controller is designed in two
steps. The first step involves the identification and
prediction of WECS by using SOQARX-RBFN model,
while the second involves deriving and implementing the
control law based prediction model.

3.1 System Identification
Consider a single-input-single-output (SISO) nonlinear time
invariant dynamical system with input-output relation as:
(1) = glg()
w() = Dy(e=1),---y(t = n),
u(t—d, - ut—d—m+ D
where y(t) is the output at the time 7 (1 = 1, 2, ...}, u(#) is the
mput, d is the known integer time delay. ¢(f) 1s the
regression vector and n, m are the system orders. g(*) is a
nonlinear function and at a small region around ¢(f) = 0, it
is Ceo continuous. The origin is an equilibrium point, then
2(0) = 0. As described 1n [8]. a quasi-linear ARX model 15
constructed in two steps. In the first step, a macro-model is
derived. which serves as a useful interface to introduce
some properties favorable to specific applications, while the
system complexity is embedded in the coefficient vector
which is unknown nonlinear function of regression vector.
In the second step, a flexible nonlinear nonparametric
model such as RBFN is used to parameterize the coefficient
vector.
Under the continuous condition, the unknown nonlinear
function g(e(r)) can be Taylor-expanded on small region around
¢l =0.ie.,

1
Y1) = g'(0)g() + Ewr(r)g"lOler) +oee

where the prime denotes differentiation with respect to ¢(r). by
introducing a coefficient vector O, defined by

)

G'F =lar, - ans bos--- bmul.r]r

to represent (g'(0) + %g"(r)g"((}) + -++), we have a regression
expression for the system:
yt) = ' (1),
where the coefficient vector ®, is unknown nonlinear function
of ¢(1).

In order to predict y(t +d) by using the input-output data up to
time 7, the coefficients a,, and b, should be calculable using the
input-output data up to time /. To do so, let us iteratively replace
¥(t + 1) in the expressions of a;; and by, with their predictions:

Je+D=2@c+1), I=1,---,d=1(@d>1)

where @(t+1) is @(t+{) whose elements y(t+k). (k = 1.2, ....1-1)
are replaced with their predictions 3(¢ + k). Define the new
expressions of the coefficients by:

dO =[O ---yt—n+1) u@)---ut—m—d+2)]"(8)

In a similar way to linear case [9], we can derive a
predictor expression for the system
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Yt +d)=¢" ()0 ©)
where O, is a coeflicient vector defined by

el’ " [(rUJ' S ‘rﬂ'-lJ BUJ o '18m+u‘-2,l']r {_]0]

where the coefficients a;;. £, are unknown nonlinear function-
s of ¢(r), and their relations with the coefficients &,. b;, are
referred to Ref.[9] for the details.

Sometimes it is better to have a differential expression for
controller design. For this purpose, let’s consider the coeffi-
cients a (i = 0,---,n—=1)and Bj,(j = 0,--- . m+d—2)as
a summation of wo parts: the constant part ¢/ and ,G‘J and the
nonlinear function part on ¢(r) which are denoted by a;, — urf
and 3, —,83.‘ respectively. By introducing @, = 6 + 0, the ex-
pression of system in the predictor form Eq.(9) can be described
by:

(1

where 6 = [af,---al_ BB, ,]" isa constant vector, and
@: = (o, - ﬂ’ig]‘ A1y — (",r,_| WBos — ﬁ{r]) cAPmed-2s —
p“m_'_d_l}p]]r is a coefficient vector that is unknown nonlinear func-
tion of ¢(r).

Applying a d-difference operator, defined by A = 1 — ¢4,
to Eq.(11) and introducing ¥(1) = Ad() and W' (O] =
MT(: )(-)’;. we obtain a d-difference expression of the system:

Y +d) = ¢" (00 + 6" (O]

Ay(r +dy = 7 (06 + ¥ (16, (12)

where W(f) = [y() - -yt —d — n+ Du()- - u(t —m—2d +2)]"
and Gf;, is unknown nonlinear function of W(r).

If we consider a controller design, it is better to have the
prediction model linear of u(r). However, the macro model
described by Eq.(12) is a general one which is nonlinear in
the variable u(t), because the coeflicient vector GVH’, is nonlin-
ear function of ‘¥(r) whose elements contain u(f). To solve this
problem, an extra variable x(7) is introduced and an unknown
nonlinear function p(£(1)) is used to replace the variable u(r) in
@{;,. Obviously, in a control system, the reference signal y*(r+d)
can be used as the extra variable x(r + d). Under Assumption
1(v), the function p(£(1)) exists. Define

£0) = 1Y) - Y —m) Xt +d) -

xt=m+dyut =1 - ut-n)l"  (13)

including the extra variable x(r + d) as an element. A typical
choice for ny,my and ny in £(t) ismy = n+d—1,np = m+2d-2
and n3 = 0. Then we have a d-defference predictor expression
linear in u(f), defined by

Ay +d) = y" (6 + ¥ (NG (14

where the coeflicient vector @‘; = (:)‘L',. is a unknown nonlinear
function of £(r), in which the element u(7) in W(r) is replaced by
pLE).

The elements of (-.-); are unknown nonlinear function of &(1),
which can be parameterized by RBFN or other neural network
models. By using a multi-input and multi-output RBFN model.
we have

568

M
OF = ) WiR{(EN, Q)
=1

(15)

where M is the number of RBF nodes, W; = |w); wj -+~ w,»\r,-lr
the weight vector (N = dim(*F(7))), and R(£(r),Q2;) the RBF
node functions defined by:

RAED.Q) = eVEOLN  jo12.... M (16)

where Q; = {Z;. A;} is the parameter sets of the RBF node func-
tions: Z; is the center vector of RBF and A; are the scaling pa-
rameters; || - ||2 denotes the vector two-norm. Then we can ex-
press the quasi-linear ARX RBFN prediction model for Eq.(14)
in a form of:

M
Ay +d)=u' (N8 + Z W (W R (£, ;)

17
j=l
Now, introducing the following notations:
W=[wy wa - Wyl (18)
RED) = [ EO-Z1F | - ulg-ZR d (19)

the quasi-linear ARX RBFN model is further expressed by

AVt +d) = o7 (06 + P (NWR(ED)
= v (Ho+E= (e
where © = [wiy -~ wup - wiar - - - way 1T, E() = NED) @ (1),
while the symbol @ denotes Kronecker production.

The quasi-linear ARX RBEFN prediction model described by
Eq.(17) is an accurate model of the system in d-difference for-
m described by Eq.(14). It is linear in the input variable u(r),
which is useful for controller design,

The linear parameter vector 6 of the linear part of the model
is updated as [15]:

(20)

a(kyitk — dye;(k)

1+ wik - ad) ik -d) en

bik) = Otk — d) +
where f(k) is the estimate of @ at step k. which also denotes the
parameter of a linear model used to approximate the system in
d-difference form, and

1 if |ek)]> 2D

iy { 0 otherwise @2

where (k) denotes the error of the linear model, defined by

e1(k) = Ay(k) — vtk — &) Bk — d) (23)

The linear parameter ©& of nonlinear part of the quasi-linear
ARX RBFN model is updated by a least square (LS) algorithm:
P)Z(k — d)ea(k)
1+ Z(k—=d) P)E(k - d)

Ok) = Ok —d) + (24)
where ©(k) is the estimate of @ at step k. ®(0) = O, is assigned
with an appropriate initial value. e(k) is the error of quasi-
linear ARX RBFN model, defined by:




The Twenty-First Intemational Symposium on Artificial Life and Robotics 2016 (AROB 2 1st 2016),

The First Intemational Symposium on BioComplexity 2016 (ISBC 1st2016),

B-Con Plaza, Beppu, Japan, January 20-22, 2016

es(k) = Ay(k)—k—d) bk —dy— =7 (k— dyS(k —d)(25)

Ptk —d) = PT(k— d)S(k - d) E(k - d)P(k - d)
1+ Z(k — YT P(k)Z(k — d)

Pk) =
(206)
No restriction is made on how the parameters ©(k) are updated

except they always lie inside some pre-defined compact region
hi:

Okyen Yk @7

The proposed SOQARX-RBFN model for identification
approach is summarized in six steps |7]:
Step 1) Set a proper initial value of the number of RBF

node. M. and predetermine the parameter sets of RBF nodes.

Step 2) Estimate the linear parameter vectors of © and
© by using the iterative algorithms. Check the performance
of the quasi-linear ARX RBFN model. If it needs further
structure optimization, go to Step 3, otherwise stop.

Step 3) Compute the active firing rate Af; for each RBF
node. The RBF nodes with active firing rate larger than an
activity threshold wall split into multiple RBF nodes. Check
the value of Af;, if there is Afi = Afp. go to Step 4),
otherwise go to Step 3).

Step 4) Carry out RBF node split for the RBF node &
when Af > Afo (4=1.2....M): the old k-th RBF node will be
deleted and new RBF nodes will be inserted. After
completing all RBF node splits, update the number of RBF
node, M, and the parameter sets of RBF nodes, and go to
Step 5.

Step 5) Compute the mutual information between the A-
th RBF node and the corresponding output nodes, m(Qx).
The RBF nodes with mutual information smaller than a
threshold ma, (0 < my < 0.05) will be deleted. Check m(Qx).
for all k. if there is m(Or)<my, go to Step 6). Otherwise, go
back to Step 2).

Step 6) Carry out RBF node deletion for the RBF node k
when m(O)<mo (k=1.2,....M). Delete the k-th RBF node as
well as all connections between the node () and the
corresponding output nodes, and update the remaining
RBFN parameters in the following way. Find the RBF node
k" which has the minimal Euclidean distance to the k-th
RBF node. After completing all RBF node deletions, update
the number of RBF node, M. and the parameter sets of RBF
nodes, and go to Step 2.

3.2 Control Strateg}-‘i
A SOQARX-RBFN model is improved to guarantee closed
loop stability of control system expressed as

G(t +d)=(1 — )1 (t + @) + peo(t + d) (28)
where
Gt + d)=v" (0Od(t) + y(t)
M 29
da(t +d)y=pT (1)) + 3 VT (e) Ry ()R (£(8), ) + u(t)

j=1
Consider a minimum variance control with the criterion
function as follows:

(30)

M(t + d) = %[g;[{. +d) —y*(t +d))?
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where y*(f) is a known bounded reference output. The

optimal control law minimizing (18) is:
y(t+d) —y (t +d) = 0.
u( ) — vy (t +d) 31)

Then corresponding to the predictors (28)-(29). we can

obtain the following controllers:

” - -\'l - A
c:yl(B(t) + p:E-la’|_r.n'-Ju;|R,-|-E:_l].n,-p=_u't: +d) —y(t) (32)
i=l1
and two others C; and C; corresponding to the extreme
cases of = 0 and g, = 1, respectively

Cr: T (0)8(t) = " (t + d) — y(t)

o om _ (33)
Cat T (08 + 3 WT(OW (1€, Q) = ' (¢ +d) — ()
=1

4 NUMERICAL SIMULATIONS

Simulations were performed in MATLAB using the
nonlinear model provided in Section 2. In this section,
simulation compares the results of the proposed algorithm
with the previous algorithm [l] subject to parameter
uncertainty and disturbance. The simulation data represent
a wind turbine with three blades, a horizontal axis. and
variable speed. The proposed controller for the WECS 1s
tested for random variation of wind speed as shown in Fig.
3 to demonstrate the effectiveness of the proposed
algorithm. To compare the results of the proposed
algorithm with the previous algorithm [1], system response
is studied for case of small disturbance.

12
$u
i
i,
L]
2
n[l 5J 1l[I IJS 20
Time (Sec)
fig. 3 Wind speed

The rotor speed for the capture of maximum power from
the wind turbine is shown in Fig. 4 (solid line). It is clear
that the dashed and dotted curves in Fig. 4 which represent
the actual rotor speed for proposed algorithm and the
previous algorithm, respectively, coincide with the solid
curve. Rotor speed tracking errors for the two algorithms
are shown in Fig. 5.

To compare the results of the proposed algorithm with
those of the previous algorithm [1], we studied the response
of the system subject to small disturbance (10% of wind
speed). It can be seen that the proposed SOQARX-RBFN
controller can fully control the plant throughout the entire
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range of wind velocities tested, in comparison to the
previous algorithm which failed to provide adequate
responses.

Rator Speed Tracking (rad/Sec)

0 5 i6 i
Time (Sec)

Fig. 4 Rotor speed tracking of the proposed algorithm

(dashed line) and the previous algorithm [1] (dotted line)
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Fig. 5 Rotational speed tracking error of the proposed
algorithm (dashed line) and the previous algorithm [I]
(dotted line)

Moreover. the rotor speed tracking error is smaller with the
proposed algorithm, compared to the previous, as shown in

Figs. 5.
5 CiNCLUSIONS

This paper presents an adaptive controller using
prediction model of SOQARX-RBFN. Based on the result
of simulation. a minimum variance contr'lcr sed on
QARXNN prediction model is effective to track MPPT of
the WECS. The proposed method is executed step by step
as follows: (1) wind speed dynam# model is adopted bases
autoregressive moving average @todel by generating a
random signal: (2) the principles of dynamic modeling of
WECS is derived with given parameters where the
maximum energy that can be extracted of wind power is
influenced by wind speed and pitch of the blades: (3) The
@ynamic of WECS is simulated [Bhd identified online using
quasi-ARX neural network model. The next input
regression vector is the input for an embedded system of
MLPNN to estimate parameters that is used directly as
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controller parameters. The controller works under switching
law to guarantee closed-loop stability. Finally, the control
performance has been confirmed by a simulation and
experimentdl] results. The main contributions of this study
are: 1) the successful development of nonlinear dynamics
of WECS modeling bases wind speed dynamic of ARMA
model with generating a random signal: 2) the successful
application of the SOQARX-RBFN prediction model to
predict WECS online; 3) the successful application of
switching controller based SOQARX-RBFN to track MPPT
of the WECS.
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