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Abstract: The quasi-linear ARX radial basis function network (QARX-RBFN) model has shown good approximation
ability and usefulness in nonlinear system identification and control. ]'cwns an ARX-like structure, easy design, good
generalization and strong tolerance to ‘Jut noise. However, the QARX-RBFN model still needs to improve the prcdictit.
accuracy by optimizing its structure. In this paper, a novel self-organizing QARX-RBEN (SOQARX-RBFN) model is
prog@sed to solve this problem. The proposed SOQARX-RBFN model consists of simultaneously network construction
and parameter optimization. It offers two important advantages. Firstly, the hidden neurons in the SOQARX-RBFN model
can be added or removed, based on the neuron activity and mutual information (MI), to achieve the appropriate network
complexity and maintain overall computational efficiency for identification. Secondly, the model performance can be
significantly improved through the structure optimization. Additionally, the convergence of the SOQARX-RBFN model
is analyzed, and the proposed appr'lch is applied to identify and control the nonlinear dynamical systems. Mathematical
system simulations are carried out to demonstrate the effectieness of the proposed method.

Keywords: artificial neural network, identification system, self-organization, radial basis function network

]
1. INTRODUCTION In this paper, a novel s@-organizing QARX-RBFN

(SOQARX-RBFN) model is proposed to improve the
A AR ARl | M T PRI s TR el prediction accuracy for nonlinear identification. The pro-

al_ld radial b_as'!s function n‘chorks (RB‘FNS} haveAshown posed SOQARX-RBFN mo d' on e of T e
highly sophisticated capability for nonlinear function ap-

o e : ly network construction and parameter optimization. It
proximation. However, from a user’s point of view, these

: - - i offers two important advantages. First, the hidden neu-
models are basically viewed as vehicles for adjusting the rons in the SOQARX-RBEN model can be added or re-
fit to the data and rarely reflect physical considerations in

the system [1][2]. RBFNs are used in nonlinear system
modeling and control because of their easy design, good
generalization, strong tolerance to infit noise, and on-
line learning ability [3]. Recently, the quasi-linear ARX- cantly improved through the .’ucture optimization.

ERAE (QARX'RBFN)_ model has b.een.propo's?d and This paper bcgins.ith the self-organizing quasi-linear
proved to have both universal approximation ability and ERSERBENIN0gE i Sect. 2. In Sect. 3, a discus-
easy to use linear properties in nonlinear system identifi- sion and analysis about convergence of SOQARX-RBFN
cation and control [4]. It owns an'ARX=like linear struc- model is given. Two benchmark problems are simulat-

ture, in which the coefficiffs are expressed by a RBFN, ed in Sect. 4, then discussion and conclusions are finally
rather than constants. The ARX-like linear structure rep-

moved, based on the neuron activity and mutual informa-
tion (MI), to achieve the appropriate network complexity
and maintain overall computational efficiency for identi-
ficatio Second, the model performance can be signifi-

e - — i sumgarized.

resents physical interpretation of applications explicitly. i’]
For'xamp]e. in nonlinear adaptive control, we anticipate 2. SELF-ORGANIZING QUASI-L]NE AR
the prediction model is linear with current input variable ARX-RBFN MODEL
for controller design, and the ARX-like structure is defi-
nitely helpful for this application [5][6][7][8]. 2.1 System Description

Howe\!‘.ﬁ;he QARX-RBFN model still needs to im- Consider a single-input-single-output(SISO) nonlinear
prove the iction accuracy @ optimizing its structure, time-invariant dynamical system with input-output rela-
which is somewhat subjective if too simple structures of tion as:

QARX-RBEN model are sele&d. The accuracy of the
approximation provided by the QARX-RBFN model may ult + d) = ge(t)) M
be inadequate to achieve the desired control performance. BEOV=[(E+d—1) - Ylt+d—n)s w(t) ult=me1)]T )
Thus, it is important to optimize the structure of QARX-

RBEN model to improve performance. where y(t) is the output at the time ¢(t = 1,2, ...),u(f)

is the input, d is the known integer time delay, (1) is the
+ Imam Sutrisno is the presenter of this paper. regression vector and n, m are the system orders. g(-) is
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a nonlinear function and at a small region around (t) =
0, it is C'*° continuous, then g(0) = 0.
2.2. ARX-like Predictor Expression

Applying Taylor expansion and considering t. Sys-
tem dynamics, then the expression of the system can be
described by [9]:
ylt+d) = (g™, 6(t))y(t) + Bla~", 0(t))ut)  (3)

alg™!, 9(t) = ags +a1,¢7  + -+ a0 @)

."(3("]’_1- o(t)) = -"30.:‘.‘1'.-'(31.&‘.(1’_1““ . ‘+.-'3m+d—2.t"]'_m_d+2(5)

where ¢~ .a backward shift operator. e.g. ¢~ 'u(t) =
u(t—1) and @(t) = [y(t), - - y(t—n+1), u(t), -, u(t—
m—d+2)]T.

'his is a prediction model. It can realize the prediction
oi;{t + d) by using the data up to t.

2.3. d-Difference Predictor Expression

Sometimes it is better to have a differential expres-
sion for controller design. F" this purpose, let’§icon-
sider the coefficients a; 4 (i = 0, -, n— 1) and 3; 4(j =
0,---,m+d— 2) as a summation of two parts: the con-
stant part af and 3} and the nonlinear function part on
¢(t) which are denofld by o, — ol and 3;; — B! [9].
Then the expression of system in the predictor form Eq.

"i) can be described by:
ylt +d) = o7 ()8 + 47 (1)O" (6)
B = [(_l'{] e Q‘:r—]ﬁl’] Fas ."‘rj)fu +d'—'2]T (?)

(')::=|(“u.r—“:p]'"(“-a 1.r—“i,._|){ﬁn.r—-'?:])“‘(.-'?nu rd—2,t =03,

where v; 1, 3 are the constant parts of «; ¢, J; ¢, respec-
tiv.y.

Applying a d-difference operator, definedby A =1 —
g%, to Eq. (6). Then the following expression of system
'.1 d-different form can be obtained:

Ay(t gd) = LT ()8 + <(T(t)) )
whe () = Ad(t)-<(U(t) = ¥T () = AsT (1)6;
and U(t) = [y(t) -yt —d —n+L)u(t) - ult —m —
2i+ 2)]7.

2.4§ d-Difference Predictor Expression Linear in u(t)

If we consi(' the controller design, it is better to have
the prediction linear of wu(#) [9]. H',vever, the Eq. (9)
is a general one which is iBnlinear in the variable u(t),
because the 0}, is based on ¥(t) whose elements contain
u(t). To @lve this problem, an extra variable x(1) is in-
troduced and an unknown nonlinear function p(£(t)) is
&ed to replace the variable u(t) in 8. Obviously, in a
contrdlsystem, the reference signal y* (¢ +d) can be used

as the extra variable x(f+d). The function p(£(t)) exists.
efine

€ = [w@):-- -yl —n)alE+d) -
8 ot — n3 + d)u(t —1) - ult — no)]T  (10)

including the extra variable x(f + d) as an element. A
typical choice for ny,n9 and n3 in £(t)isny; =n+d—

.1:.2 = m + 2d — 2 and nz = 0. Then the expression of
Eq. (9) can be described by:

Ay(t+d) =T ()8 + Y7 (£)67 an
where 07 = é,’f,,

2.5. Quasi-ARX RBFN Model

By applying the parameterizations to different expres-
sions we can have different models, and different models
can be used for different applications. In order to have
a model the coefficients should be parameterized, then
by parameterizing cv, 3 we can havel prediction model,
by parameterizing ct,_;. ;1 we can have a d-difference
prediction model, then without losing the generality we
discuss parameterizati&s of 7.

The elements of #' are unknown nonlinear function of
O(t)., which can be parameterized by NN or RBFN. In
this pgper the RBFN used has a local property,

1

0F = wiR;(£(t), %) (12)
=i
where M is the number of RBFNs, wj = [wyj. waj, -+, wNj]

the coefficient vector, and R;(£(t), £2;) the RBFNs de-
fined by:
Ry(£(t), ) = e~NlE®-ZI* 517 2... M13)

while Q; = {Z,. )} is the parameters set of the RBFN;
Z; is the center vector of RBFN and \; are the scaling
Birameters; || - |2 denotes the vector two-norm. Then we

1 )7 (8) Can express the quasi-ARX RBEN prediction model for
mpd =2

Egq. (11) in a form of:
M
Ay(t+d) =T+ WTwiR;(£(t), Q)  (14)
=1

2.‘ Parameter Estimation

In or&r to determine the centers and widths of the
RBFN, affinity propagation (AP) clustering method is

ployed. The center Z; is the arithmetic mean value

all training data in each cluster. The width A; is o

es the largest distances between all training data in
each cluster. The parameters ## and © are estimated by
using ('-]ine identification algorithms, respectively [9].

The linear parameter ¢ of the linear part of the model
" updated as [10]:

(k) = O(k — d) + 1 :iz)(zf(ic ;) gir&@% (15)

where @{k} is th¥estimate of @ at time instant k, which
also denotes t. arameter of a linear model used to ap-
proximate the system in d-difference form, and

[ 1 if |ei(t)|>2D
alt) = { [)'otherwise (6)

where e (1) denotes the error of the linear model, defined

by .

ex(t) = Ay(t) = 9(t — 4)T6(t - ) )




2.7. Self-Organizing of QARX-RBFN

By using the parameter estimation in Section 3.2, the
model structure is properly prederermine‘ and then a
reasonable model can be obtained. The model perfor-
mance can be further improved by optimizing the mod-
el structure. Then, by adding procedure to optimize the
.ructurc. we propose self-organization of QARX-RBFN.
It offers two imp':anl: advantages. First, the model per-
formance can be significantly improved through the pa-
rameter optimization. Second, the hidden neurons in
the &)QARX—RBFN model can be pruning or grow-
ing, based on the neuron activity and mutual information
(MI), to achieve the appropriate network complexity and
maintain overall computational efficiency for identifica-
tion. The proposed SOQARX-RBFN model for identifi-
cation approach is summarized in seven steps:

Step (1) For the unknown dynamical system Eq. (1),
create an initial RBFN. The number of neurons in the in-
put and output layers is the same as that of the input and
output variables in the dynamical system. The number of
neurons in the hidden layer is randomly generated. Al-
| the parameters are initialized, and the centers, widths,
and connection weights of the RBFN are all uniformly
distributed with a small range.

Step (2) For the input sample u(t), the centers and
widths are adjusted by the gradient method [11]. The out-
put weights are trained by the formula:

wi' = mQy(t). gt)e™ (x(t) fe

where Q(y(t),u(t)) is the output value of the hidden
negon.

Step (3) Compute the active firing rate (AF), of the
hidden neurons using Eq. (19). New neurons are inserted
according to the activity threshold Af,,. If Af; > Af,.
20 to step (4), otherwise go to step (5).

PQi (1)

;{‘; 1 Qk(u)
where Af}. is the AF value of the kth hidden neuron, K
is the number of hidden neurons, €2}, is the parameters set
of the RBFEN, p > 1 is a positive constant.

Step (4) Split the ith hidden neuron and insert new hid-

den neurons. The initial parameters of the newly inserted
neurons are obtained from Eq. (21) and Eq. (22).

Af = k=12, K) (19

Bk = Yilk + d5u (20)
Tk,j = YOk, J =12, -"Vn(:ru (21)

where .95 < ",‘_'< 1.05 and 0 < 63- < 0.1 (For better
performance, -y; should be close to 1. and 4; should be
close to 0.05), ji; and oy, are center and width of the
kth hidden neuron, and Ny, 15 the number of the newly
inserted neurons which is decided by the rate of active
firing A fj..

C rlon Qe —e(w) N
Wiy = QR&]’(U) ’ ng T; = J: (22)

where 7 is the allocating parameters for the new neu-
rons, .(u) is the output value of the ith hidden neuron,
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Fig. I IENN SOQARX-RBEN controller schema.

Q1. j(u) is the output value of the newly inserted jth hid-
den neuron, w@is the output weight of the kth hidden
neuron, and wy, ; is the output weight of the jth new hid-
den neuron.

Step (5) Based on Eq. (23) if m({;y,) is less than
the threshold mg(0 < mg < 0.05), go to step (6). Other-
wise, go to step (7).

M Qe yq)
min(H(Qk), H(y,))
M (S yq) = H () —H(Qlyq) = H(yq)—H (yg[gf24)

where H(Q;.) = In(2xe)X|COV (Q)]/2, COV(£2,) is
a standard covariance of {1, £ is a mathematical constant
here (2.718) and H (y,) = In(27e)|COV (y,)|/2.

Step (6) Delete the connection b.wocn the hidden
neuron {}; and the output neuron y,, and update the re-
maining RB]’J parameters. Find the neuron £’ in the
hidden layer which has the minimal Euclidean distance
between neuron & and neuron k'. The parameters of the
hidden neuron k' are adjusted as follows:

m( i) = 23)

B after = Mk before, Okt .after = Okt before (25)
el
Wi after = WE' before + u-"l.:( gA (('U,}) ) (26)

where Wi pe fore and Wi o 10, are the connecting weight
of the hidden neurons k' befre and after structure ad-
justment, ftgr pefore and i afrer are the centers of the
hidden neuron &' I“ore and after deleting neuron k and ,
Wi before AN Wi o frep are the widths of the hidden neu-
rons k' before and after deleting neuron k.

Step (7) t =t + 1, go to step (2). Stop whent =T'.

) 3. CONTROLLER DESIGN

The improved Elman neural network (IENN) SOQARX-
RBEFN feedback system used in this paper is shown in
Fig. 1. In Fig. 1, v, y, u and § are the reference variable,
control variable (measured output), manipulated variable
and predicted outputs, respectively; e,. is the error that in-
dicates the distinction between the reference and the pre-
diction model; e, is the error that indicates the distinction
between the process and the prediction model [14].

The purpose of IENN SOQARX-RBFN is to design a
control law and an updating law for the primary controller




parameters, such that the system output ¥ is to follow an
input reference signal r and the closed-loop dynamic per-
formance of system follows the predictive model.

The structure of the proposed IENN SOQARX-RBFN
includes the input layer (i layer), the hidden layer (j lay-
er), the context layer (r layer) and the output layer (o lay-
er) with two inputs and one output. The basic function
and the signal propagation of each layer are introduced in
the following: Layer 1 (input layer): the node input and
the node output are represented as:

Xi(k) = fi(net;) = net; = e;(k) 2N

where e; (k) and X, (k) are the input and the output of the
input layer, respectively and k represents the & itera-
tion.

Layer 2 (hidden layer): the node input and the node
output are represented as:

X;(k) = S(net;) (28)

net; = Z wii Xi(k) + Z wyri XE(k) (29)
) r

where X (k) and net ; are the output and the input of the
hidden layer, w;; and w,; are the connective weights of
input neurons to hidden neurons and context neurons to
hidden neurons, respectively, X © the output of the context
layer, and S(X) is sigmoid function, that is, S(X) =
1/(1+eX).

Layer 3 (context layer): the node input and the node
output are represented as:

X7(k) =X (k- 1) + X;(k - 1) (30)

where 0 < v < 1 is the self-connecting feedback gain.
Layer 4 (output layer): the node input and the node
output are represented as:

Yo(k) = f(net,(k)) = net (k) (G1)

netq(k) = E-tz!_joXj-(k) + wY (k) (32)
J

Y(k) = CY(k—1) + Yo(k — 1) (33)

where Y, (k) the output of the IENN SOQARX-RBFN
and also the control effort of the proposed controller,
Y ¢(k) the output of the output feedback neuron, 0 < ¢ <
11is the self-connecting feedback gain, w;, and w,, are the
connective weights of hidden neurons to output neurons
and output feedback neuron to output neuron, respective-
ly.

4. DISCUSSION AND ANALYSIS ABOUT
CONVERGENCE

The SOQARX-RBFN model can insert or prune the
hidden nodes depending on the activities of the nodes
and the connecting mutual information. This execution
behavior indicates that the SOQARX-RBFN model does
not guide the RBFN design process in a predefined and
fixed way. Due to the activity threshold that is associated
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with the required error, the SOQARX-RBEN model can
adjust the structure to achieve the desired learning perfor-
mance. The design scheme used in the SOQARX-RBFN
model is a new and efficient method of the RBFN struc-
ture design. The proposed self-organizing algorithm can
be used to determine a suitable structure for improving
the RBFN performance.

For the proposed SOQARX-RBFN model, the conver-
gence of the SOQARX-RBFN model with respect to the
erowing, pruning and parameter learning steps is an im-
portant issue and requires careful investigation, as it is
crucial for the successful applications. First, the con-
vergence in the case without structural changes is de-
termined. The description of convergence for parame-
ter learning steps of the SOQARX-RBEN model can be
found in [12]. Then, the convergence in the structural
change phase is determined by taking into account both
the growing and pruning processes.

5. SIMULATION RESHLTS

To show better prediction accuracy of the proposed
.ethod, a numerical system are tested for identification
of the self organizing®)ARX-RBFN prediction model
and implementation to the nonlinear control.

5.1. Numerical System Identification
5. 'l System Under Study

In order to study the behavior of the proposed control
method, a numerical simulation is described in this sec-
tion. The system is a nonlinear one governed by:

y(t) = fly(t=1), y(t=2), y(t=3), u(t—1), u(—2))(34)

where:

zrrorars(ry — 1) + x4
'-}— 2+ :1:%

To test the obtained model, a set of 800 input-output data

is sampled as test data and the input data are described
as:

fle1, 22,23, 24, 5] = (35)

sin(27t /250) if ¢ < 500
ult) = 0.8 sin(2m,/250) (36)
+0.2sin(2mt/250) otherwise.

5..2. Results and Analysis

When identifying the system, the SOQARX RBFN
prediction model Eq. (14)is 'ed, in which the number of
RBEFN functions A/ = G, the model orders m = 3, n = 2,
the delay d = 1. And the bound of the nonlinear differ-
ence term of the system is set to D = 0.05.

Estimation of nonlinear parameter 2;: The nonlinear
parameter vectors &, = Z;, A;,5 = 1,..., M are first
determined off line. To do so, the system is excited by a
random sequence with the amplitude between —1.1d 1 as
in and 1000 input-output data sets are recorded. Then an
AP clustering algorithm is applied to the data set for par-
titioning the input space of £(¢) = [y(t) ... y(t—n)y* (t+
Dyu(t — 1)...u(t —m)]T. After clustering, six cluster-
s are generated automatically in the input space, so that




Table 1 Identification result of QARX-RBFN model for
two methods.

Method M | RMSE
QARX-RBFN 6 | 0074
Self Organizing QARX-RBFN | 5 | 0.035

M = 6. The parameter vector Z; corresponds to the cen-
ter of each cluster, while A; is calculated by multiplying
a constant ¢ = 0.2 to the largest distance of the data in
each cluster.

The final results and comparisons are shown in Table
I, in which M denotes the number of RBFN function-
s and the accuracy denotes model simulation root mean
square error (RMSE) on the test data [13]. Itis t‘.nd that
the value of M is fixed for the model obtained by using
QARX-RBFN without self orga.?_ing and its become d-
ifferent for the model obtained by using QARX-RBFN
with s.’ organ'ng. Also it is found that the model ob-
tained by using QARX-RBFN with self organizing gives
better prediction accuracy than the model obtained by us-
ing (‘XRX-RBFN without self organizing. The compar-
ison simulation on the test data for identification result
‘QA}‘(-RBFN model without and with self organizing
gives a RMSE of U.O'M.aithout self organizing and 0.035
with self organizing. It can be found that the identifi-
cation result of QARX-RBFN model with self organiz-
ing gives better prediction accuracy than that of QARX-
RBFN model without self organizing.

5.2. Nonlinear Control Implementation

5.’. The Desired Output
The desired output in this example is a piecewise func-
tion:

(37

Boyt-1)
+r(E=1), t € [1,100] U [151,200]
vl = 0.7s1gn(0.4493)
'y*(f k)
+0.57r(F — 1), t € [101, 150]

where r(t) = sin(27t/25).

5.2.2. Results and Analysis

Three main control result approaches are implemented
foflcomparison.
« Method |: Adaptive fuzzy switching controller based
on QARX-RBFN model [4]
« Method 2: Animproved Elman neural network (IENN)
controller based on QARXNN [14]
« Method 3: IENN controller based on self organizing
QARX-HBFN model
Figure 2 shows the control results, in Wh"l the compar-
isons between method 3 and method | are shown. In
Fig. 2 the dotted line (black) is the desired output y0(t),
the dasl“ine (magenta) is the control output y1(¢) of
method 1 and the d ling (blue) is the control output
y3(t) of method 3. We ca.easi]y see that the proposed
method 3 has approached a good result since ¢ = 10,
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Fig. 2 Control results. IENN SOQARX-RBFN control
output (solid), fuzzy switching QARX-RBEN control
output (dashed) and reference (dotted)

I
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y3{t), y2(t) and yO(t)
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20 40 B0 &0 100 120 140 160 180 200
t

Fig. 3 Control results. IENN SOQARX-RBFN con-
trol output (solid), IENN QARXNN control output
(dashed) and reference (dotted)

which is ben. than the method 1. It is also better than
the method 1 when ¢ € [(10,100) U (110, 200)] and the
robustness of.ic proposed method 3 is much better than
the method 1 since ¢ = 1. as illustrated. Therefore, the
proposed method 3 .ve a better control result than the
method 1. Figure 3 shows the control results, in wI.h
the comparisons between method 3 and method 2 are
shown. In Fig. 3 the dotted line (black) is the desired
output y0(t), the d.hed line (red) is the control output
y2(t) of method 2 and the sof}l line (blue) is the con-
trol output y3(t) of method 3. We c*easily see that the
proposed method 3 has approached a good result since
t = 10, which is b.:er than the method 2. It is also better
than the method 2 when ¢ € [(10, 100) U (110, 200)] and
the robustness of tR§ proposed method 3 is much better
than the method 2 since ¢ = 1008 illustrated. There-
fore, the proposed method 3 have a better control result
than the method 2. Table 2 shows the results of three




Table 2 Comparison result of the errors.

Method | Mean of RMSE | Mean of var | Accuracy
Method 1 0.0141 0.057 96.24
Method 2 0.0117 0.035 97.38
Method 3 0.0075 0.011 98.46

16}
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14 "‘
i
i Y
1
W
.\
%
\.'.\
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Fig. 4 Convergence characteristics of the errors.

methods. We can see that method 2 gives a smaller con-
trol error than method 1, and the method 3 improves the
control performance further. For additional comparison,
the convergence speed of the diffcr.t methods are given
in Fig. 4. The proposed method 3 gives better accuracy
than the other methods.

6. CONCLUSION

In this paper, a novel SOQARX-RBFN model used
to improve the prediction accuracy for nonlinear identi-
fication. The proposed SOQARX-RBEN model consists
of simultane@s network construction and parameter op-
timization. It offers two important advantages. First,
the hidden neurons in the SOQARX-RBFN model can

added or removed, based on the neuron activity and
MI, to achieve the appropriate network complexity and
maintain overall computational efficiency for identifica-
tion. Second, the model performance can be significantly
improved through the parameter optimization. The pro-
posed SOQARX-RBFN model simplifies neural network
training, and thereby significantly reduces computational
complexity.
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