14.pdf



2013 2nd International Conference on Measurement, Information and Control

Implementation of Lyapunov Learning Algorithm
for Fuzzy Switching Adaptive Controller Modeled
Under Quasi-ARX Neural Network

Imam Sutrisno
Graduate School of Information
Production and Systems
Waseda University
Kitakyushu 808-0135 Japan and
Politeknik Perkapalan Negeri Surabaya
Email: imams3jpg @moegi.waseda.jp

Abstract—This paper presents a fuzzy adaptive controller
applied to a non linear system modeled under a Quasi-linear
ARX Neural Network, with stability proof by using the Lyapunov
approach. This work exploits the new idea to use Lyapunov
function to_train @Eulti-input multi-output neural network on
the core-p@t sub-model. The proposed controller is designed
between a linear controller and non linear controller based on
the characteristic of fuzzy switching algorithm. The improving
performances of the Lyapunov learning algorithm are stable
in the learning process, fast convergence of error, and able to
increase the accuracy of the controller.

Index Terms—Ly ahnov Learning Algorithm, Fuzzy Switching
Adaptive Controller; Quasi-ARX Neural Network.

. [. INTRODUCTION

In the previous work a quasi-ARX Neural Network
(QARXNN) model with a switching mecharf§m studied for
system adaptive control as in Refs. [1][2] to simplify the
identification for confbl, which is a combination of a linear
part followed by a /1 switching part. It can satisfy the
stability and performance requirements by using only one
model. Nevertheless, there are still some aspects that need to
be improved upon the control method based on the QARXNN
model. One is the 0/1 hard switching method is not 'tremely
smooth; the second is the parameters of QARXNN model to
be adjusted online are highly nonlinear, which deteriorates
since the adaptability of a control system. In the controller
design, Lyapunov function can be used to ensure bounded
ness in control trajectory [3], Lyapunov based on the controller
can make the closed-loop system globally [4]. Lyapunov also
can be used to estimate the asymptotic region in controller
design by genetic algorithm [5], Lyapunov method of linear
programming to be used to analyze system stability and control
synthesis of the state feedback controller [6].

The rest of this paper organized as follows: Section II de-
rives a QARXNN prediction model. Section III introduces the
'yupumw learning algorithm for QARXNN model. Section I'V
constructs a fuzzy switching adaptive control system based on
the QARXNN using Lyapunov learning algorithm predictors
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and analyzes the stability of the control system. Section V
presents simulation results to demonstrate its performance.
Finally, Section VI concludes the paper.

II. QUASI-ARX NN PREDICTION MODEL
A..Dmb!em Formulation

Consider a single-input single-output (SISO) time invariant
whose input-output relationship described by,

y(t) = g((t)) + e(t) ()
o) = [yl = gt —ny) ult - 1) - ult - no)]T

where, u(t) € R,y(t) € R,e(t) e Rt = 1,2,---. g(-) : R
is the unknown continuous function describing the nonlinear
dynamical systems. ¢() € R"="+ 1" is the regression vector
composed delays of the input-output data. The number of input
variables n equaled to the sum of n, and n,. The noise into
the system e(f) is the uniform random input added on the
unknown function input-output of the system.
Assumption 1: (i) The input and output of training data
bouflled and g(¢(t)) is the unknown continuous function. (ii)
The system has a globally uniformly asymptotically stable zero
dynamics.hrough Taylor’s expansion series, g(¢(t)) can be
described around the small region of ¢(t) = 0,

y(t) = 9(0) + g'(0)o(t) + %@T(t)g"(o)@(ﬂ +

output of the system (2) can be decomposed into yg = g(0)
then by th.output of the system (2) the regression of the
system (1) can be described into (3),

y(t) = yo + S(8)T0(S(1)) + e(t) 3)

The output of the system (3) can be simplified as a matrix
equation as,

cte(t) )

y(t|o(t)) = o1 @

where, ¥ = [yo0(o(t))]. © = [LoT (¢)]T, ¥ called as nonlinear
parameter of core-part and & called as an input variable space
of macro-part.
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B. Prediction Model

The form of ARX linear model with nonlinear time function
at its coefficient depicted in two polynomials of the numerator

an‘ denumerator a '

. b(l t)q_ QP O00Ge b{n, t)t}'
u(f)

I+anngt+aent 2+ - +awm,ng ™
where, the operator g% represent t()._’”y{t) =y(t— k).

The coefficient of a;; and b;; are nonlinear functions
coefficient of a regression vector of #(¢(t)). The polynomial
equation ARX model (5) has the same properties with (3), so
(5) can be represented into matrix form by (4).

Regression of the system (1) also using Taylor’s expansion
series. The output of the system has a linear series function
between input spaces ¢(f) to the unknown nonlinear function
of the input space 0(¢(t)).

The output of model in (3) up to y,(t + d), where d is
the time delay. Suppose that the output of model satisfies at
the unknown nonlinear coefficient of model 6*(¢(t)) so the
prediction output y,(t + d) of the model can be calculated at
the time (f + d).

For a system described by (1), the output predictor at d step
ahead prediction y,(t + d|t, @(t)) satisfies if y(t) satisfies in
(3). Thegform (5) can be rewritten into,

y(t) mbogult —1) +

—aany(t=1) -

s b(n,,.t]”[t - nir}
t0r T Gn, .t}y(t - ny) (6)

The output (6) can be rewritten as a regression output
prediction at time delay d described by (7),

yp(t + di by pu(t+d—1)+
—aqpyt=1+d) -

s b(n t)n{
ny + d) (7)

— 1y +d)

- ﬂ'(uy,t)y(t -

Based on (4) and (7),the output predictor y,(f 4 d) can be
expressed into matrix equation as,

.:(Hdli-.f(i))

where, @, = [1y(t +d 1)
?.)u(t+d— ) uf+d—2)--
la@,e  any .0 b1 - Bin, p)-

The input of MLP core-part can be expressed as £ = [y(+
d=1)y(t+d-2)---yt Pd—n,)ult+d—-2) - -u(t+d-
) x(t+d)]. Thc X{ + d) is the virtual input of core-part,
the input reference of the system can be used as virtual input
of core-part.

The prediction output can be realized by QARXNN. The
input vector is @, and the input of core-part is £, and the
output of core-part are 1. The output of core-part is the
nonlinear coefficient X, and the input of core-part £ is the
input-output composed with time delay.

The number of the input vector dimension of ¢ is equal to
n, and the number of hidden layer is m, and the nunhr of
the output layer is n 4+ 1. The QARXNN incorporating neural
network can be exprfed as,

Up(t +d|t, &(t))

RN (8)

t+d¥2)---y(t+d-

[ +d— 'n,,)] and Py =

= OIR(E(F), Q) 9
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R(E(L), Q) = Wol WiE(t) + 0 §

where Q = {W,, Wy, 0}, W, € R™™ W, ¢ RMx(+D
the weights matrix of the first layer and second layer.
0 € R+l i5 the bias vector of output nodes, and T is the
diagonal nonlinear operator with similar sigmoidal elements
on hidden nodes.
By sub'itute (9) and (10), the prediction output of QARXN-
N model can be expressed by,

7 yp(t =+ dlt, £(t)) = &) W' WHE(E) +

Define the switching‘rutenon function as follows,

i ail)(Jle:(D)]|* — 4A2)
2 1+ a2 —k)TP(1—k—-1)¥( - k)
]

tow Z (1 - a:(l) lesIP).

I=t—N+1

+®50 (1)

e (12)
where N is an intfffer, and ¢ > 0 is a predefined constant.

Now, allow the expression of switching law y(t) based on
the switching criterion function,

x(t) = { Lwaite) > J:(0);

otherwise
By comparing ./, (t) and .J5(t), decides when the nonlinear
part abandoned, If Jy(¢) > Jo(f) the nonlinear part added,
else only use linear part to identify.

(13)

III. LYAPUNOV LEARNING ALGORITHM FOR QARXNN
PREDICTION MODEL

A. MIMO MLP Neural Network

The prediction output satisfied if only the output of core-part
can be satisfied. The core-part of QARXNN is MIMO MLP
neural network. Consider that the MLP core-part QARXNN
have n input node, m hidden node, ‘;0 the output must has
n + 1 node. The input vector is £() = [£ & -+ &,], and
the output of hidden node is h = [l ha - -+ hyy,], the output of
MLP core-part is s = [$1 S+ * Sp41].

The output at hidden node with nonlinear function in the
hidden layer can be expressed as,

n m

hi = HQ Y &Wi65) = fi(2)

i=1 j=1

(14)

where f; is the nonlinear sigmoidal function at hidden nodes.

1—e"7
z)= 5
1@ l+e = 15
The output of nonlinear MLP core-part can be expressed as,
m n4l
REWD, Q) =D hWaim +0 (16)
i=1r=1

where, Wy i), Wa(;.), 0 are the weight matrix in the first
layer, the weight matrix in the second layer, and the bias vector
of the output node. The output of core-part ®(;) is the MLP
output with n input nodes of &(t). Consider there are two




sub-models in QARXNN, those are linear part or macro-part,
and nonlinear part or core-part. The output of two sub-models
expressed by,

SM1 2z =®]0 a7
SM2  z, = BT WLT(WE(t)) (18)
The output guidance of two sub-models are expressed by,
o = yp(t+dt,&(t)) — STWLI(W1(t)) (19)
2 = Yp(t + d|t, E(t)) — D10 (20)

B. Lyapunov Learning Algorithm

The learning algorithm based on Lyapunov function de-
scribed as follows,
1) Set f = 0, and small initial values of W} and W5, set
k=1
2) Calculate z;, then estimate # by model SM1 using LSE
(Least Square Error) method.
3) Calculate error, z, = ®(2*,&(t)),

e(k) = R(Q%, £(2)) — R(2,£(2)) 2n
where, & = the sequence of learning number, e(k) =
[er e2 -+ enta), R(Q*,E() = [Rf N5 -+ Ry ,),
R(2,€(2)) = Ry R -~ Rypy]

4) Choose Lyapunov function candidate, the candidate
function is stated as V(k) = f(e(k)), where V (k) =0
only if e(k) =0, V(k) > 0 only if e(k) # 0.
5) Update the weights of MLP neural network from output
layer to input layer based on AV(k) = V(k) — V(k —
1) < 0. According the Lyapunov theory, if V (k) > 0
and V' (k) < 0, the error output will converge to zero at
time goes to infinity.
lim e(k)=0
k—oo
6) Stop if pre-specified condition is met, otherwise goto
step 2. set k=k+1.
The weight matrices in first layer and second layer can be cal-
culated based on Lyapunov function candidate are expressed
as,
V (k)

= BFe?(k) (22)

where, 3 is the positive constant value and 3 > 1, k is the
k sequence of learning number. The derivative of Lyapunov
function is proportional to AV (k).

AV(k) = V(k) - V(k —1)
= B*e2(k) — B*1e2(k — 1)
= BE(N(Q",€(1)) — (Q,£(1))? - B 1e2(k - 1)

m m

= BER(Q%,E(1) = DD Waghy()? — 8571 (k — 1)
j=lr=1
= BER(, €6 — 30 D Waun (D0 D Waap&o))?

j=lr=1 =1 j=1

—'3k_1€2[k _ 1)
moom noom

033 W33 e

j=1r=1 i=1 j=1

FR(Q, £

—-BF1e(k - 1)
=—(B1-1)e?(k—-1)<0,if 8>1 (23)
IV. FUZZY SWITCHING CONTROLLER AND ITS STABILITY

A. Cor"oﬁer Design

The controller desngl.ncludes two stage; the first stage for
identifying QARXNN prediction model; and the .:xt stage
for deriving control law. The identified QARXNN prediction
model from previous parts, described by, .

Bt +d | tg(t) =T ()8 + x ()P (1).WoT( H’lfh

o (24)
where 0, W;, W and B used for controller design. Consider
a minimum variance control with the criterion function as
follows,

M(t+1) = g(y(t+d) —y*(t+d))? + %u(c)ﬂ] (25)

where A is weighting factor for the control input. The con-
trollers can achieve by solving,

w=0 i=1,2 (26)
u;
Two controllers can be derived based on QARXNN prediction
model by solving (26), .
Coom(t) = (@b -1)';u(t -1
] = f)ébé+)\ 0 q " )q
+ yi(E+1) - a' (g y(t)) @n
n 8
-801 5 Sr —1
Cozun(t) = ———((Bos—Blg )gult —1)
-SUA + A
+ Y1) =alghEm)yt) @8

here

a(q ) €J+alff 1"" +ﬂm 19 l

‘ _1} = Bﬂ +51']’_1 + o+ bm+d A!q_m s .

—n+1.
|
—m—d+2,

a(g=&(t) = Gog +1eq " + -+ Gnreg
.S{q_l E[t]} = G’Ut + 6’1 tq i saeiion /j’m%—d 24
The coefficients can be gotten as follows,

[0?{) Y. /7’!] L m-i—d 2] =0

[a{lt an—]..td{]t !m+d 2!] = 9 + ”‘KQFUVLE[ } }
Switching control based on two or more controllers researched
as in Refs. [2][9]. An integer switching law was introducing
into control model just like the function £(¢) in the prediction
model. It means that the linear and nonlinear controllers al-
tt—:rm!ly used. This paper used a fuzzy membership functions

v(t) based on the criterion function .J; (£) and Ja(t),
0, z(t) > K;
v(t) = x(t), k <z(t) < K; (29)
1, x(t) < k




where z(t) = J-(thf(«*(t) K and k are constants which satisfy
ke (0,0.5), K € (0.5,1). Now, a fuzzy switching controller

[7118] obtalnedaased on the fuzzy membership functions v(t),
8 Cru(t) = (1 — v(t))w(t) + v(t)un(t) (30)

The switching law £(#) firstly calculated from input and
output signals and model errors, then t.bcl into the identified
model. The fuzzy switching law v(t) calculated from input
and output signals and model errors, then is used into the
control model. The proposed controller has four distinguishing
features,

1) it is linear for the variable synthesized in control sys-

tems;

2) its parameters have explicit meanings;

3) it is only one predictor which combines a switching

algori.n

4) it has a fuzzy switching mechanism not a simple 0 or 1

. switching

B. Stability Analysis

Give the stability analysis of the proposed nonlinear con-
troller system as follow, Theorem: For the system (1) with
adaptive fuzzy switching controller (30), all the input and out-
put signals in the closed-loop system are bounded. Moreover,
the tracking error of the system can converge @ zero when a
properly neural network is determined. Proof : Firstly, similar
to Refs.[2][7], it can get,

N ..

)2 — 4A)

JEE;Z [1+\I!{t— }T\IJ(t—d}} - e
and
o 1) 8

NN+ Wt — )T Tt — )

Along with Assumption 1 (ii) e;(¢) is bounded. By (12) and
(31), the second term of .J;(t) always bounded. J5(t) has two
cases, (i) Ja(t) is bounded, so the model error e(t) bound.
and satisfies Eq.(32) (ii) .J2(#) is unbounded. Since (1) J,(t) is
bounded. So there exist a constant ty such that v(t) = 1,vt >
tp. The model also has bm.ded error e(t).

From above inequalities, the input and output of the 'osed—
loop switching control system bounded. The linear part always
bounded. If a proper nonlinear part is chosen and the accurate
parameters is adjusted, the model error e5(t) can converge on
zero. It a‘y exists a constant Ty satisfy v(t) = 0,¥t > Ty.
Then the tracking error of the model can converge on zero.

V. CONTROL SIMULATIONS
The system considered is a nonlinear one governed by,
y(t) = gly(t = 1), (¢t — 2), y(t = 3), ult — 1), ult — 2)] + o(?)

(33)
where g(.) is the nonlinear function with a disturbance,

r1Tox3xs(wy — 1) + 24
1+ a3 + a3
+ qln{l + 0.224)

g["rlvw'zv Iy, T4, w-’}] =

(34)
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Fig. 1. (a) Simulation result of proposed method compare with linear control
and (b) Simulation result of proposed method compare with 0/1 switching (c)
Simulation result of proposed method compare with fuzzy switching Ref.[8]

The desired output in this example is a piecewise function:

By (t-1)
tr(t—1), t € [1,100) U [151,200]
y(t) = 0.7sign(0.4493 (35)

y@t -1

+057r(t=1), ¢ € [101,150]

where r(t) = sin(2x#/25). The performance of network
is measured using RAMSE root mean square error index
expressed as,

RMSE

N ' .
SRR ()
N 3
where t = 1,2,--- | N. The other performance of Quasi-ARX
neural network model for prediction is measured by NPE
(Normalized Prediction Error) index stated as,

[ N i
NPEG#d) = | ==V Eds y(‘!d x100% (37)
Y1t +d)
In Fig. 1, the black dotted line is the desired output, the

red solid line den&s the proposed method output y(f). In
Fig. 1(a), magenta dashed line shows the linear control output
yo(t). Obviously, the control output with the proposed method
is nearly consistent with the desired output at most of the time
and the linear .mlml output have bad performance. In the
Fig. 1(b), blue dashed Iine.mws the 0/1 switching control
output i (). Obviously the proposed control output is almost
coincidence with the desired output. It also can be found that
the 0/1 switching control(fsults have some wobble at the last
half time. In Fig. 1(c), green dashed line shows the fuzzy
switching control output y»(¢). Obviously the proposed control
method can do better than fuzzy switching controller.
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TABLE I
COMPARISON RESULTS OF THE ERRORS.

Method RMSE | Variances | Accuracy
Proposed control 0.0109 0.023 95.78
Fuzzy switching control | 0.0147 0.047 94.55
0/1 switching control 0.0201 0.082 91.41
linear control 0.0240 0.105 81.23

Lyapunov learning algorithm based on QARXNN prediction
model. First, the principles of QARXNN prediction model
was derived. Then, the network structure and theoretical
bases of proposed method has been adopted to adapt the
Lyapunov learning algorithm to'aplace the traditional trial-
and-error method. Finally, the control performance of the
proposed method based on QARXNN prediction model has

been confirmed by experimental result.

Fig. 2. (a) Convergence characteristics of the errors (b) Switching sequence
(c) Fuzzy switching sequence

The main contributions of this study are:(1)the successful

development of an improved fuzzy switching controller;(2) the

successful adoption of a Lyapunov learning algorithm;(3)the
successful application of the fuzzy switching controller based
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Fig. 3. The NPE Index Performance using Lyapunov learning algorithm

The similar conclusion also can be gotten from convergence
characteristic of the errors is shown in Fig. 2(a). The switch-
ing sequence is presented in Fig. 2(b) and fuzzy switching
sequence is.:»resented in Fig. 2(c).

Table I gives the errors of three methods; the proposed
control method gets a better accuracy and the error of the
proposed method is smaller than the other methods.

In Fig. 3, the NPE index near to constant value, the
ﬂuctuatit. in a small range of NPE value is from uncertainty
function of random PRBS signal when the system are tested
by deterministic input. The NPE index prediction are always
constaml'l independence trials, it proof that the Lyapunov
learning @gorithm make stable in system model prediction.

This study has successfully demonstrated the effectiveness
of the proposed fuzzy switching adaptive controller using

VI. CONCLUSION
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on QARXNN prediction model to control nonlinear system
with robust control performance.
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