
SICE Journal of Control, Measurement, and System Integration, Vol. 9, No. 2, pp. 070–077, March 2016

Special Issue on SICE Annual Conference 2015

A Self-Organizing Quasi-Linear ARX RBFN Model
for Nonlinear Dynamical Systems Identification

Imam SUTRISNO ∗,∗∗, Mohammad Abu JAMI’IN ∗,∗∗, Jinglu HU ∗,
and Mohammad HamiruceMARHABAN ∗∗∗

Abstract : The quasi-linear ARX radial basis function network (RBFN) model has shown good approximation ability
and usefulness in nonlinear system identification and control. It has an easy-to-use structure, good generalization and
strong tolerance to input noise. In this paper, we propose a self-organizing quasi-linear ARX RBFN (QARX-RBFN)
model by introducing a self-organizing scheme to the quasi-linear ARX RBFN model. Based on the active firing rate and
the mutual information of RBF nodes, the RBF nodes in the quasi-linear ARX RBFN model can be added or removed,
so as to automatically optimize the structure of the quasi-linear ARX RBFN model for a given system. This significantly
improves the performance of the model. Numerical simulations on both identification and control of nonlinear dynamical
system confirm the effectiveness of the proposed self-organizing QARX-RBFN model.

Key Words : nonlinear dynamical system, system identification and control, quasi-linear ARX model, self-organization,
radial basis function network.

1. Introduction

Neural networks (NNs), neuro-fuzzy networks (NFNs) and
radial basis function networks (RBFNs) have shown a highly
sophisticated capacity for nonlinear function approximation.
However, from a user’s point of view, these models are ba-
sically viewed as vehicles for adjusting the fit of the data,
and rarely reflect physical considerations in the system [1],[2].
RBFNs are used in nonlinear system modeling and control be-
cause of their easy design, good generalization, strong toler-
ance to input noise, and online learning ability [3],[4]. The
capabilities of the final network of RBFNs are determined by
the parameters optimization algorithms and the structure size.
The numbers of hidden nodes in these RBFNs, however, are of-
ten assumed to be constant [5]. Only the parameters of these
RBFN models are adjusted; the structures themselves are not.
Huang [6] proposed a simple sequential learning algorithm for
RBFNs, which is referred to as the RBF growing and prun-
ing algorithm (GAP-RBF). The original design of GAP-RBF
was enhanced to produce a more advanced model known as
the generalized growing and pruning RBF algorithm (GGAP-
RBF). Both GAP-RBF and GGAP-RBF neural networks use a
pruning and growing strategy that is based on the “significance”
of a neuron and links it to learning accuracy [7].

Recently, a quasi-linear ARX RBFN (QARX-RBFN) model
has been proposed, and proved to have both universal approx-
imation ability and easy-to-use linear properties in nonlinear
system identification and control [8],[9]. It has an ARX-like

∗ Graduate School of Information, Production and Systems,
Waseda University, Kitakyushu-shi, Fukuoka 808-0135, Japan

∗∗ Politeknik Perkapalan Negeri Surabaya, Kampus ITS Sukolilo,
Surabaya 60111, Indonesia

∗∗∗ CAPER, Faculty of Engineering, Universiti Putra Malaysia,
Malaysia
E-mail: jinglu@waseda.jp
(Received September 18, 2015)
(Revised January 6, 2016)

linear structure, whose coefficients are nonlinear function of
regression vector, rather than constants, and an RBFN is em-
bedded to parameterize these coefficients. The ARX-like linear
structure represents physical interpretation of applications ex-
plicitly. For example, in nonlinear adaptive control, it is desir-
able to have a prediction model linear with the input variable
for controller design, and the ARX-like linear structure and its
linearity with the input variable are definitely helpful for this
application [8]–[10].

On the other hand, a quasi-linear ARX RBFN model still
has room to improve its prediction accuracy by optimizing
its structure, since if too simple structures of quasi-linear
ARX RBFN model are selected, the prediction accuracy of the
QARX-RBFN model might be inadequate to achieve the de-
sired control performance. Thus, it is highly motivated to de-
velop a self-organizing scheme for the structure optimization
of QARX-RBFN model. In this paper, we propose a self-
organizing QARX-RBFN model for nonlinear system identi-
fication by extending the results appeared in [11]. We con-
centrate our discussions on the modeling, the parameter esti-
mation and the self-organizing scheme by: 1) reorganizing the
paper; 2) redesigning and improving the self-organizing algo-
rithm; 3) adding new numerical simulations to show the effec-
tiveness of the self-organizing algorithm. The proposed self-
organizing QARX-RBFN modeling scheme consists of simul-
taneously model structure optimization and model parameter
optimization. It offers two important advantages: First, the
RBF nodes in the quasi-linear ARX RBFN model is added or
removed, based on the RBF node activity and the connection
mutual information (MI), to achieve the appropriate network
complexity and maintain overall computational efficiency for
identification. Second, the model performance is significantly
improved through the structure optimization.

The paper is organized as follows. Section 2 formulates the
problem to solve. Section 3 introduces the quasi-linear ARX
RBFN models. Section 4 proposes the self-organizing QARX-

JCMSI 0002/16/0902–0070 c© 2015 SICE

SICE JCMSI, Vol. 9, No. 2, March 2016 71

RBFN model. Section 5 carried out numerical simulations to
demonstrate the effectiveness of the proposed model. Finally,
Section 6 gives conclusions.

2. Problem Formulation
Consider a single input single output nonlinear time-invariant

dynamical system with input-output relation described by

y(t) = g(ϕ(t)) (1)

ϕ(t) = [y(t − 1), · · · y(t − n),

u(t − d), · · · , u(t − d − m + 1)]T (2)

where y(t) is the output at the time t (t = 1, 2, ...), u(t) the input,
d the known integer time delay, ϕ(t) the regression vector and,
n,m are the system orders, and g(·) is a nonlinear function. We
assume that at a small region around ϕ(t) = 0, g(·) is C∞ con-
tinuous, and the origin is an equilibrium point, that is g(0) =
0.

In order to identify the system (1), in this paper we propose
a self-organizing quasi-linear ARX RBFN model with an easy-
to-use structure. For this purpose, we firstly construct a macro
model with an easy-to-use structure, based on domain knowl-
edge; secondly parameterize the macro model using a multi-
input and multi-output RBF network; and finally optimize the
model structure as well as the model parameters by introducing
a self-organization identification algorithm.

3. Quasi-Linear ARX RBFN Model
As described in Ref. [9], a quasi-linear ARX model is con-

structed in two steps. In the first step, a macro-model is derived
based on domain knowledge, which serves as a useful interface
to introduce some properties favorable to specific applications,
while the system complexity is embedded in the coefficient vec-
tor which is a unknown nonlinear function of the regression
vector. In the second step, a flexible nonlinear nonparametric
model such as an RBF network model is used to parameterize
the coefficient vector.

3.1 Macro Models

3.1.1 Regression expression [9]
Under the continuous condition, the unknown nonlinear

function g(ϕ(t)) can be Taylor-expanded on a small region
around ϕ(t) = 0, i.e.,

y(t) = g′(0)ϕ(t) +
1
2
ϕT (t)g′′(0)ϕ(t) + · · · (3)

where the prime denotes differentiation with respect to ϕ(t). By
introducing a coefficient vector Θϕ, defined by

Θϕ = [a1,t · · · an,t b0,t · · · bm−1,t]
T (4)

to represent (g′(0) + 1
2ϕ

T (t)g′′(0) + · · ·), we have a regression
expression for the system:

y(t) = ϕT (t)Θϕ (5)

where the coefficient vector Θϕ is unknown nonlinear function
of ϕ(t).
3.1.2 Predictor expression [9]

In order to predict y(t+d) by using the input-output data up to
time t, the coefficients ai,t and b j,t should be calculable using the
input-output data up to time t. To do so, let us iteratively replace
y(t + l) in the expressions of ai,t and b j,t with their predictions:

ŷ(t + l) = ĝ(ϕ̂(t + l)), l = 1, · · · , d − 1 (d > 1) (6)

where ϕ̂(t+l) is ϕ(t+l) whose elements y(t+k), (k = 1, 2, ..., l−1)
are replaced with their predictions ŷ(t + k). Define the new
expressions of the coefficients by:

ãi,t = ãi(φ(t)), b̃ j,t = b̃ j(φ(t)) (7)

where φ(t) is a vector including all the elements of {ϕ(t+1), ϕ(t+
2), ..., ϕ(t + d)} except y(t + k), (k = 1, ..., d − 1), defined by

φ(t) = [y(t) · · · y(t − n + 1) u(t) · · · u(t − m − d + 2)]T

(8)

In a similar way to the linear case [9], we can derive a pre-
dictor expression for the system

y(t + d) = φT (t)Θφ (9)

where Θφ is a coefficient vector defined by

Θφ = [α0,t · · ·αn−1,t β0,t · · · βm+d−2,t]
T (10)

where the coefficients αi,t, β j,t are unknown nonlinear functions
of φ(t), and their relations with the coefficients ãi,t, b̃ j,t are re-
ferred to Ref. [9] for the details.
3.1.3 d-Difference predictor expression [8]

Sometimes it is better to have a differential expression for
controller design. For this purpose, let’s consider the coeffi-
cients αi,t(i = 0, · · · , n − 1) and β j,t(j = 0, · · · ,m + d − 2) as
a summation of two parts: the constant part αl

i and βl
j and the

nonlinear function part on φ(t) which are denoted by αi,t−αl
i and

β j,t − βl
j, respectively. By introducing Θφ = θ + Θn

φ, the expres-
sion of system in the predictor form Eq. (9) can be described
by:

y(t + d) = φT (t)θ + φT (t)Θn
φ (11)

where θ = [αl
0 · · ·αl

n−1β
l
0 · · · βl

m+d−2]T is a constant vector, and
Θn
φ = [(α0,t − αl

0) · · · (αn−1,t − αl
n−1)(β0,t − βl

0) · · · (βm+d−2,t −
βl

m+d−2)]T is a coefficient vector that is unknown nonlinear func-
tion of φ(t).

Applying a d-difference operator, defined by Δ = 1 − qd,
to Eq. (11) and introducing ψ(t) = Δφ(t) and ΨT (t)Θ̃n

Ψ
=

ΔφT (t)Θn
φ, we obtain a d-difference expression of the system:

Δy(t + d) = ψT (t)θ + ΨT (t)Θ̃n
Ψ (12)

where Ψ(t) = [y(t) · · · y(t − d − n+ 1)u(t) · · · u(t −m− 2d + 2)]T

and Θ̃n
Ψ

is unknown nonlinear function of Ψ(t).
As in Refs. [8],[10],[12],[13], we introduce the following as-

sumptions for the system, in which ς(Ψ(t)) = ΨT (t)Θ̃n
Ψ

.
Assumption 1: (i) The system under consideration has a

global representation Eq. (11); (ii) The linear part parameters
θ lie in a compact region

∑
; (iii) The system has a globally uni-

formly asymptotically stable zero dynamics; (iv) The nonlinear
difference term ς(·) is globally bounded, i.e. ‖ς(·)‖ ≤ D and the
bound is known; (v) The system is controllable, in which a rea-
sonable unknown controller may be expressed by u(t) = ρ(ξ(t)),
where ξ(t) is defined in Subsection 3.1.4.
3.1.4 d-Difference predictor expression linear in u(t) [8]

If we consider a controller design, it is better to have the
prediction model linear of u(t). However, the macro model
described by Eq. (12) is a general one which is nonlinear in

SICE JCMSI, Vol. 9, No. 2, March 201672

the variable u(t), because the coefficient vector Θ̃n
Ψ

is a nonlin-
ear function of Ψ(t) whose elements contain u(t). To solve this
problem, an extra variable x(t) is introduced and an unknown
nonlinear function ρ(ξ(t)) is used to replace the variable u(t) in
Θ̃n
Ψ

. Obviously, in a control system, the reference signal y∗(t+d)
can be used as the extra variable x(t + d). Under Assumption
1(v), the function ρ(ξ(t)) exists. Define

ξ(t) = [y(t) · · · y(t − n1) x(t + d) · · ·
x(t − n3 + d) u(t − 1) · · · u(t − n2)]T (13)

including the extra variable x(t + d) as an element. A typical
choice for n1, n2 and n3 in ξ(t) is n1 = n+d−1, n2 = m+2d−2
and n3 = 0. Then we have a d-difference predictor expression
linear in u(t), defined by

Δy(t + d) = ψT (t)θ + ΨT (t)Θn
ξ (14)

where the coefficient vector Θn
ξ = Θ̃

n
Ψ

is an unknown nonlinear
function of ξ(t), in which the element u(t) in Ψ(t) is replaced by
ρ(ξ(t)).

Remark 1: Macro models described by Eqs. (5), (9), (12) and
(14) provide useful interfaces favorable to certain applications.
These models are obtained by applying mathematical transfor-
mation. On the other hand, the representation flexibility of the
models is realized by the following parameterization of the co-
efficient vectors using neural network models. Therefore, it is
not important if their derivations are mathematically strict.

3.2 Parameterization of Macro Models

In the previous subsection, we derive macro models with var-
ious expressions described by Eqs. (5), (9), (12) and (14). In or-
der to obtain the quasi-linear ARX models, the unknown non-
linear coefficient vectors should be parameterized using RBFN
modes. By parameterizing the coefficient vector Θϕ of Eq. (5),
we have a quasi-linear ARX model; by parameterizing the co-
efficient vector Θφ of Eq. (9) we have a quasi-linear ARX pre-
diction model; by parameterizing the coefficient vector Θ̃n

Ψ
of

Eq. (12) we have a d-difference quasi-linear ARX prediction
model; by parameterizing the coefficient vector Θn

ξ of Eq. (14)
we have a d-difference prediction model linear in u(t). These
different quasi-linear ARX models can be used for different ap-
plications. Without losing the generality, we only discuss the
parameterizations of Θn

ξ in Eq. (14).
The elements of Θn

ξ are unknown nonlinear functions of ξ(t),
which can be parameterized by RBFN or other neural network
models. By using a multi-input and multi-output RBFN model,
we have

Θn
ξ =

M∑
j=1

w jR j(ξ(t),Ω j) (15)

where M is the number of RBF nodes, w j = [ω1 j ω2 j · · · ωN j]T

the weight vector (N = dim(Ψ(t))), and Rj(ξ(t),Ω j) the RBF
node functions defined by:

Rj(ξ(t),Ω j) = e−λ j‖ξ(t)−Z j‖2 j = 1, 2, · · · , M (16)

where Ω j = {Zj, λ j} is the parameter sets of the RBF node
functions; Zj is the center vector of a RBF and λ j are the scal-
ing parameters; ‖ · ‖ denotes the vector two-norm. Then we

can express the quasi-linear ARX RBFN prediction model for
Eq. (14) in a form of:

Δy(t + d) = ψT (t)θ +
M∑
j=1

ΨT (t)w jR j(ξ(t),Ω j) (17)

Now, introducing the following notations:

W=[w1 w2 · · · wM] (18)

ℵ(ξ(t)) = [e−λ1‖ξ(t)−Z j‖2 · · · e−λM‖ξ(t)−Z j‖2]T (19)

the quasi-linear ARX RBFN model is further expressed by

Δy(t + d) = ψT (t)θ + ΨT (t)Wℵ(ξ(t)) (20)

= ψT (t)θ + ΞT (t)Θ

where Θ = [w11 · · ·wn1 · · ·w1M · · ·wnM]T , Ξ(t) = ℵ(ξ(t))⊗Ψ(t),
while the symbol ⊗ denotes Kronecker production.

The quasi-linear ARX RBFN prediction model described by
Eq. (17) is a parameterized model of the system in d-difference
form described by Eq. (14). It is linear in the input variable u(t),
which is useful for controller design.

4. Self-Organizing QARX-RBFN Model
4.1 Model Parameter Estimation

The model structure is determined with the given number of
RBF nodes, M. According to the parameter property, the model
parameters as in Eq. (20) are divided into three groups: the lin-
ear parameter vector θ of the linear part ψT (t)θ, the linear pa-
rameter vector Θ and the nonlinear parameter sets Ω j of the
nonlinear part ΨT (t)Wℵ(ξ(t)). The nonlinear parameter sets Ω j

are determined off-line. Let us denote the estimates of Ω j by
Ω̂ j. In order to determine the centers and the widths of the RBF,
an affinity propagation (AP) clustering method is employed.
The center Zj is the arithmetic mean value of all training data
in each cluster. The width λ j is (an appropriate positive con-
stant) times the largest distances between all training data in
each cluster. The parameter vectors θ and Θ are estimated by
using iterative algorithms, respectively [14].

The linear parameter vector θ of the linear part of the model
is updated as [15]:

θ̂(k) = θ̂(k − d) +
a(k)ψ(k − d)e1(k)

1 + ψ(k − d)Tψ(k − d)
(21)

where θ̂(k) is the estimate of θ at step k, which also denotes the
parameter of a linear model used to approximate the system in
d-difference form, and

a(k) =

{
1 if |e1(k)| > 2D
0 otherwise

(22)

where e1(k) denotes the error of the linear model, defined by

e1(k) = Δy(k) − ψ(k − d)T θ̂(k − d) (23)

The linear parameter Θ of nonlinear part of the quasi-linear
ARX RBFN model is updated by a least square (LS) algorithm:

Θ̂(k) = Θ̂(k − d) +
P(k)Ξ(k − d)e2(k)

1 + Ξ(k − d)T P(k)Ξ(k − d)
(24)

where Θ̂(k) is the estimate of Θ at step k. Θ̂(0) = Θ◦ is assigned
with an appropriate initial value. e2(k) is the error of quasi-
linear ARX RBFN model, defined by:

SICE JCMSI, Vol. 9, No. 2, March 2016 73

Fig. 1 Flowchart of self-organization of the ARX-RBFN model.

e2(k) = Δy(k) − ψ(k − d)T θ̂(k − d) − ΞT (k − d)Θ̂(k − d)

(25)

P(k) =
P(k − d) − PT (k − d)Ξ(k − d)TΞ(k − d)P(k − d)

1 + Ξ(k − d)T P(k)Ξ(k − d)
(26)

No restriction is made on how the parameters Θ̂(k) are updated
except they always lie inside some pre-defined compact region
�:

Θ̂(k) ∈ � ∀ k (27)

4.2 A Self-Organization of QARX-RBFN Model

With a given number of RBF nodes to predetermine the
model structure, a reasonable model can be obtained by using
the algorithm described in Subsection 4.1. The model perfor-
mance can be further improved by optimizing the model struc-
ture. Then, by adding a procedure to optimize the structure, we
propose a self-organizing QARX-RBFN (SOQARX-RBFN)
model. Figure 1 shows a flowchart of the self-organization of
the QARX-RBFN model, which is summarized in the follow-
ing six steps:

Step 1) Set a proper initial value of the number of RBF node,
M, and predetermine the parameter sets of RBF nodes,
Ω j = {Zj, λ j} j = 1, 2, .., M.

Step 2) Estimate the linear parameter vectors of θ and Θ by
using the iterative algorithms described in Subsection 4.1.
Check the performance of the quasi-linear ARX RBFN
model. If it needs further structure optimization, go to Step
3, otherwise stop.

Step 3) Compute the active firing rate A fk for each RBF node
by

A fk =
1

Ns

Ns∑
t=1

ρQk(t)∑M
k=1 Qk(t)

, (28)

where Qk(t) is the output of the k-th RBF node (k =
1, 2, · · · ,M), ρ 1 is a positive constant, and Ns is the
number of training data. The RBF nodes with active firing
rate larger than an activity threshold A f0 (0.05 < A f0 <

0.3) will split into multiple RBF nodes. Check the value
of A fk ∀k, if there is A fk > A f0, go to Step 4), otherwise
go to Step 5).

Step 4) Carry out RBF node split for the RBF node k when
A fk > A f0 (k = 1, 2, ...,M): the old k-th RBF node will
be deleted and Nnew new RBF nodes will be inserted. The
initial parameters of the newly inserted RBF nodes are de-
termined in the following way. The centers Zk, j and the
width λk, j of newly inserted RBF nodes are given by

Zk, j = γ jZk + δ j
1

Ns

Ns∑
t=1

ξ(t) (29)

λk, j = γ jλk, j = 1, 2, · · · ,Nnew (30)

where 0.95 < γ j < 1.05 and 0 < δ j < 0.1 (For better per-
formance, γ j should be close to 1, and δ j should be close
to 0.05), Zk and λk are the center and width of the old k-th
RBF node, and Nnew (Nnew = 2 in our simulations) is the
number of the newly inserted RBF nodes corresponding to
the old k-th RBF node; And the output connection weights
of newly inserted RBF nodes are calculated by

ωk, j = r j
1

Ns

Ns∑
t=1

(
ωkQk(t) − e2(t)

Qk, j(t)

)
(31)

Nnew∑
j=1

r j = 1, j = 1, 2, · · · ,Nnew

where r j is the allocating parameters for the new RBF
nodes, Qk(t) is the output value of the old k-th RBF node,
Qk, j(t) is the output value of the newly inserted j-th RBF
node, e2(t) is the current prediction error. ωk is the output
weight of the old k-th RBF node, and ωk, j is the output
weight of the j-th new RBF node.

After completing all RBF node splits, update the number
of RBF node, M, and the parameter sets of RBF nodes,
Ω j = {Zj, λ j} j = 1, 2, ..,M, and go to Step 5.

Step 5) Compute the mutual information between the k-th
RBF node and the corresponding output nodes, m(Qk)
(k = 1, 2, ...,M) by

m(Qk) =
N∑

q=1

(
M(Qk; yq)

min(H(Qk),H(yq))

)
(32)

M(Qk; yq) = H(Qk) − H(Qk |yq)

= H(yq) − H(yq|Qk) (33)

where N = dim(Ψ(t)) is the number of correspond-
ing output nodes for the k−th RBF node, H(Qk) =

SICE JCMSI, Vol. 9, No. 2, March 201674

ln(2πε)K |COV(Qk)|/2,COV(Qk) is a standard covariance
of Qk, ε is a mathematical constant here (2.718) and
H(yq) = ln(2πε)|COV(yq)|/2. The RBF nodes with mutual
information smaller than a threshold m0, (0 < m0 < 0.05)
will be deleted. Check m(Qk),∀k, if there is m(Qk) < m0,
go to Step 6). Otherwise, go back to Step 2).

Step 6) Carry out RBF node deletion for the RBF node k when
m(Qk) < m0 (k = 1, 2, ...,M). Delete the k-th RBF node as
well as all connections between the node Qk and the cor-
responding output nodes, and update the remaining RBFN
parameters in the following way. Find the RBF node k′

which has the minimal Euclidean distance to the k-th RBF
node. The parameters of the RBF node k′ are adjusted as
follows:

Zk′,a f ter = Zk′,be f ore, λk′,a f ter = λk′,be f ore (34)

ωk′,a f ter = ωk′,be f ore + ωk
1

Ns

Ns∑
t=1

(
Qk(t)
Qk′ (t)

)
(35)

where ωk′,be f ore and ωk′,a f ter are the connecting weight of
the RBF node k′ before and after structure adjustment,
Zk′,be f ore and Zk′,a f ter are the centers of the RBF node k′

before and after deleting the RBF node k and, λk′,be f ore

and λk′,a f ter are the widths of the RBF node k′ before and
after deleting the RBF node k.

After completing all RBF node deletions, update the num-
ber of RBF node, M, and the parameter sets of RBF nodes,
Ω j = {Zj, λ j} j = 1, 2, .., M, and go to Step 2.

Remark 2: The convergence of the self-organizing algorithm
can be evaluated in two phases. First, when the number of
RBF node, M, and the parameter sets of RBF nodes, Ω j =

{Zj, λ j} j = 1, 2, ..,M are fixed, the parameter vectors θ and Θ
are estimated by LS algorithms (21) and (24), which are guar-
anteed to converge. Secondly, when the number of RBF nodes
is changing: 1) in case of new RBF nodes inserted, the parame-
ter set {Zk, j, λk, j} and the weightωk, j are calculated by (29)-(31)
in such a way that the prediction error e2(t) to be zero; 2) in case
of RBF nodes deleted, the prediction error e2(t) is adjusted to be
no change by (35), which ensures the convergence of the algo-
rithm is not influenced. Due to limitation of space, we will not
carry out detailed discussion here, and similar detailed discus-
sions are referred to Ref. [7],[16],[17].

5. Numerical Simulations

5.1 Simulations for System Identification

In order to study the behavior of the proposed control
method, a numerical simulation is described in this section. The
system is a nonlinear one governed by:

y(t) = f [y(t − 1), y(t − 2), y(t − 3), u(t − 2), u(t − 3)] (36)

where:

f [x1, x2, x3, x4, x5] =
x1x2x3x5(x3 − 1) + x4

1 + x2
2 + x2

3

(37)

The system is exited by 1000 random sequence with the am-
plitude between −1 and 1. To test the obtained model, a set of

Table 1 Estimations of parameters Ω j, j = 1, . . . , 6.

Z1 Z2 Z3 Z4 Z5 Z6

ξ1 -0.6904 0.3529 -0.3977 0.1227 0.4506 0.7655
ξ2 0.6364 0.5067 0.5446 0.5786 0.3103 0.7084
ξ3 0.7064 0.5483 0.5124 0.7187 0.1876 0.1487
ξ4 0.7350 0.3166 0.3356 0.7124 0.4563 0.3415
ξ5 0.0812 0.3556 0.2856 0.2578 0.2034 0.0589
ξ6 0.6412 0.4780 0.7912 0.3324 0.5849 0.8315
ξ7 0.7637 0.7355 0.7085 0.8172 0.5081 0.8417
λ 0.0181 0.0272 0.0315 0.0231 0.0281 0.0172

Fig. 2 The number of RBF nodes with initial value M = 2.

800 input-output data is sampled as test data and the input data
are described as:

u(t) =

{
sin(2πt

250) if t < 500
0.8 sin(2πt

250) + 0.2 sin(2πt
250) otherwise.

(38)

When identifying the system, the self-organizing QARX
RBFN prediction model Eq. (17) is used, in which the number
of RBF nodes is first given with a suitable value, say M = 6 or
automatically determined by a clustering algorithm, the model
orders m = 3, n = 2, the delay d = 2, and the bound of the
nonlinear difference term of the system is set to D = 0.05.

Estimation of nonlinear parameters Ω j: The nonlinear pa-
rameter vectors Ω j = {Zj, λ j}, j = 1, . . . ,M are first deter-
mined offline. Then an AP clustering algorithm is applied to the
dataset for partitioning the input space of ξ(t) = [y(t) . . . y(t −
n)y∗(t+1)u(t−1) . . . u(t−m)]T . After clustering, six clusters are
generated automatically in the input space, so that M = 6. The
parameter vector Zj corresponds to the center of each cluster,
while λ j is calculated by multiplying a constant = 0.2 to the
largest distance of the data in each cluster.

The results of Ω j = {Zj, λ j}, j = 1, . . . , 6 are shown in
Table 1. What should be mentioned is that the nonlinear param-
eters and number of RBF node are fixed during the whole iden-
tification procedure for quasi-linear ARX RBFN model without
self-organization, but it has been added and removed for the
self-organizing QARX-RBFN model.

The simulations are carried out as follows: first, at beginning
M is given a suitable value, then we do parameter estimation
as described in Subsection 4.1, after that we adjust M to opti-
mize the structure following the algorithm described in Section
4.2. Figure 2 shows the number of RBF node with the initial
value M = 2, in which the final number of RBF nodes M = 4
is shown. Figure 3 shows the number of RBF nodes with the

SICE JCMSI, Vol. 9, No. 2, March 2016 75

Fig. 3 The number of RBF nodes with initial value M = 4.

Fig. 4 The number of RBF nodes with initial value M = 6.

Fig. 5 The number of RBF nodes with initial value M = 8.

initial value M = 4, in which the final number of RBF nodes
M = 4 is shown. Figure 4 shows the number of RBF nodes
with the initial value M = 6, in which the final number of RBF
nodes M = 4 is shown. Figure 5 shows the number of RBF
nodes with the initial value M = 8, in which the final number
of RBF nodes M = 4 is shown. Although the algorithm begins
with different initial values of M, it converges to M = 4.

A comparison is shown in Table 2, in which M denotes the
number of RBF nodes and the accuracy denotes the root mean

Table 2 Identification result of QARX-RBFN model for two methods.

Method M RMSE
QARX-RBFN without self-organization 6 0.073

QARX-RBFN with self-organization 4 0.015

Fig. 6 Simulation of identified models on the test data. The solid line
shows the system true output, the dashed line denotes the simu-
lated model output by using QARX-RBFN with self-organization
and the dashdot line denotes the simulated model output by using
QARX-RBFN without self-organization.

square error (RMSE) of between the system output and the
model output simulaltion on the test data. The result shows
that the self-organizing QARX RBFN model gives better per-
formance than the quasi-linear ARX RBFN model, which con-
firms the effectiveness of the self-organization algorithm.

The comparison simulation on the test data for identifi-
cation result of QARX-RBFN model without and with self-
organization is shown in Fig. 6, which gives an RMSE of 0.073
without self-organization and 0.015 with self-organization for
t = 1000 and the value of M = 4. It can be found that
the identification result of the QARX-RBFN model with self-
organization gives better prediction accuracy than that of the
QARX-RBFN model without self-organization.

5.2 Simulations for Control

The desired output in this example is a piecewise function:

y∗(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.6y∗(t − 1) + r(t − 1),
t ∈ [1, 100] ∪ [151, 200]

0.7sign(0.4493y∗(t − 1) + 0.57r(t − 1)),
t ∈ [101, 150]

(39)

where r(t) = sin(2πt/25).
Two main control methods are implemented for comparison

between using fixed RBF nodes, M = 6 and optimized M = 4.

• Method 1: Adaptive fuzzy switching controller based on
SOQARX-RBFN model [8]

• Method 2: An improved Elman neural network (IENN)
controller based on SOQARX-RBFN [18]

Since the quasi-linear ARX RBFN prediction model described
by Eq. (17) is linear in the input variable u(t), it is easy to design
the control system. Please refer Refs. [8] and [18] for the de-
tails of control systems based on the quasi-linear ARX RBFN
models.

SICE JCMSI, Vol. 9, No. 2, March 201676

Fig. 7 Control results. Method 1: Adaptive fuzzy switching self-
organizing QARX-RBFN control output using optimized M = 4
(solid), adaptive fuzzy switching quasi-linear ARX-RBFN control
output using fixed M = 6 (dashed) and reference (dotted).

Fig. 8 Control results. Method 2: IENN SOQARX-RBFN control out-
put using optimized M = 4 (solid), IENN QARX-RBFN control
output using fixed M = 6 (dashed) and reference (dotted).

Figure 7 shows the control results, in which the comparisons
between Method 1 using fixed RBF nodes M = 6 and Method
1 using optimized M = 4 are used.

In Fig. 7 the dotted line is the desired output y0(t), the dashed
line is the control output y1(t) of Method 1 using fixed RBF
nodes, M = 6 and the solid line is the control output y3(t) of
Method 1 using optimized M = 4.

We can easily see that the proposed Method 1 using opti-
mized M = 4 has given a good result since t = 10, which
is better than Method 1 using fixed RBF nodes, M = 6. It
is also better than Method 1 using fixed RBF nodes, M = 6
when t ∈ [(10, 100) ∪ (110, 200)] and the robustness of pro-
posed Method 1 using optimized M = 4 is much better than
Method 1 using fixed RBF nodes, M = 6 since t = 100, as
illustrated. Therefore, the proposed Method 1 using optimized
M = 4 has a better control result than Method 1 using fixed
RBF nodes, M = 6.

Figure 8 shows the control results, in which the comparisons
between Method 2 using fixed RBF nodes, M = 6 and Method
2 using optimized M = 4 are shown. In Fig. 8 the dotted line
is the desired output y0(t), the dashed line is the control output
y2(t) of method 2 using fixed RBF nodes, M = 6 and the solid

Table 3 Comparison result of the errors.

Method Mean of RMSE Mean of variances
Method 1 using fix M = 6 0.0141 0.057

Method 1 using M = 4 0.0103 0.021
Method 2 using fix M = 6 0.0117 0.035

Method 2 using M = 4 0.0075 0.011

line is the control output y3(t) of Method 2 using optimized
M = 4. We can easily see that the proposed method 2 using
optimized M = 4 has achieved a good result, since t = 10,
which is better than Method 2 using fix hidden neurons M = 6.
It is also better than Method 2 using fixed RBF nodes, M =

6 when t ∈ [(10, 100) ∪ (110, 200)] and the robustness of the
proposed method 2 using optimized M = 4 is much better than
Method 2 using fixed RBF nodes, M = 6 since t = 100, as
illustrated. Therefore, the proposed method 2 using optimized
M = 4 has a better control result than Method 2 using fixed
RBF nodes, M = 6.

Table 3 shows the results of the two methods. We can see
that Method 1 using optimized M = 4 gives smaller control er-
ror than Method 1 using fixed RBF nodes, M = 6, and Method
2 using optimized M = 4 improves the control performance
further than Method 2 using fixed RBF nodes, M = 6. The pro-
posed method 2 using optimized M = 4 gives better accuracy
than the other methods.

6. Conclusion

This paper has proposed a self-organizing QARX-RBFN
model by adding a self-organizing procedure to optimize the
structure of the quasi-linear ARX RBFN model. Based on
the active firing rate and the connection mutual informa-
tion of RBF nodes, the RBF nodes in the quasi-linear ARX
RBFN model can be added or removed, so that the structure
of the quasi-linear ARX RBFN model is optimized for the
given system. This significantly improves the performance of
the model. Numerical simulations on identification and con-
trol have confirmed the effectiveness of the proposed self-
organizing QARX-RBFN model.

References

[1] L. Ljung: System Identification: Theory for The User, 2nd ed.,
Prentice-Hall PTR, 1999.

[2] M.A. Jami’in, I. Sutrisno, and J. Hu: Deep searching for
parameter estimation of the linear time invariant (LTI) sys-
tem by using quasi-ARX neural network, Proceedings of
The 2013 International Joint Conference on Neural Networks
(IJCNN2013), pp. 2758–2762, 2013.

[3] H. Yu, T.T. Xie, S. Paszczynski, and B.M. Wilamowski: Ad-
vantages of radial basis function networks for dynamic system
design, IEEE Trans. Ind. Electron, Vol. 58, No. 12, pp. 5438–
5440, 2012.

[4] M.Z. Hou and X.L. Han: Constructive approximation to mul-
tivariate function by decay RBF neural network, IEEE Trans.
Neural Netw., Vol. 21, No. 9, pp. 1517–1523, 2009.

[5] K. Dalamagkidis, K.P. Valavanis, and L.A. Piegl: Nonlinear
model predictive control with neural network optimization for
autonomous autorotation of small unmanned helicopters, IEEE
Trans. Control Syst. Technol., Vol. 19, No. 4, pp. 818–831,
2011.

[6] G.B. Huang, P. Saratchandran, and N. Sundararajan: An ef-
ficient sequential learning algorithm for growing and pruning
RBF (GAP-RBF) networks, IEEE Transactions on Systems,
Man, and Cybernetics Part B: Cybernetics, Vol. 34, No. 6,

SICE JCMSI, Vol. 9, No. 2, March 2016 77

pp. 2284–2292, 2004.
[7] H.G. Han, Q.L. Chen, and J.F. Qiao: An efficient self-

organizing RBF neural network for water quality predicting,
Neural Netw., Vol. 24, No. 7, pp. 717–725, 2011.

[8] L. Wang, Y. Cheng, and J. Hu: Stabilizing switching control
for nonlinear system based on quasi-ARX model, IEEJ Trans.
Electrical and Electronic Engineering, Vol. 7, No. 4, pp. 390–
396, 2012.

[9] J. Hu, K. Kumamaru, and K. Hirasawa: A quasi-ARMAX
approach to the modeling of nonlinear systems, International
Journal of Control, Vol. 74, No. 18, pp. 1754–1766, 2001.

[10] J. Hu, K. Hirasawa, and K. Kumamara: A method for applying
neural networks to control of nonlinear systems, Neural Infor-
mation Processing: Research and Development, pp. 351–369,
Springer, 2004.

[11] I. Sutrisno, M.A. Jami’in, J. Hu, and M.H. Marhaban: Self-
organizing quasi-linear ARX RBFN modeling for identifica-
tion and control of nonlinear systems, Proceedings of The
SICE Annual Conference 2015 (SICE2015), Hangzhou, China,
pp. 788–793, 2015.

[12] I. Sutrisno, M.A. Jami’in, and J. Hu: Modified fuzzy adaptive
controller applied to nonlinear systems modeled under quasi-
ARX neural network, Artificial Life Robotics, Vol. 19, No. 1,
pp. 22–26, 2013.

[13] I. Sutrisno, M.A. Jami’in, and J. Hu: Neural predictive con-
troller of nonlinear systems based on quasi-ARX neural net-
work, Proceedings of the 2012 International Conference on
Automation and Computing (ICAC 18th 2012), Loughborough,
UK, pp. 83–88, 2012.

[14] L. Wang: Study on adaptive control of nonlinear dynamical
systems based on quasi-ARX models, DSpace at Waseda Uni-
versity, available at https://dspace.wul.waseda.ac.jp/dspace/
handle/2065/37540, 2013.

[15] L. Chen and K.S. Narendra: Nonlinear adaptive control us-
ing neural networks and multiple models, Automatica, Vol. 37,
No. 8, pp. 1245–1255, 2001.

[16] H.G. Han and J.F. Qiao: An adaptive computation algorithm
for RBF neural network, IEEE Transactions on Neural Net-
works and Learning Systems, Vol. 23, No. 2, pp. 342–347,
2012.

[17] M.A. Jami’in, I. Sutrisno, and J. Hu: Lyapunov learning al-
gorithm for quasi-ARX neural network to identification of
nonlinear dynamical system, Proceedings of The 2012 IEEE
International Conference on Systems, Man, and Cybernetics
(SMC2012), Seoul, pp. 3141–3146, 2012.

[18] I. Sutrisno, M.A. Jami’in, and J. Hu: An improved Elman neu-
ral network controller based on quasi-ARX neural network for
nonlinear systems, IEEJ Trans. Electrical and Electronic Engi-
neering, Vol. 9, No. 5, pp. 494–501, 2014.

Imam SUTRISNO

He received his B.S. and M.S. degrees in Control Sys-
tem of Electrical Engineering from Institute of Technol-
ogy 10th Nopember Surabaya, Indonesia, in 1998 and
2005, respectively. He is currently a Ph.D. student at
Waseda University. His research interests include neu-
ral predictive controller, modified Elman neural network,
fuzzy switching controller, Lyapunov learning algorithm,

adaptive neurofuzzy, system identification and control systems design. He
is a student member of IEEE.

Mohammad Abu JAMI’IN

He received his B.S. degrees in Marine Engineering
and M.S. degrees in Control System of Electrical En-
gineering from Institute of Technology 10th Nopember
Surabaya, Indonesia, in 2000 and 2008, respectively. He
is currently a Ph.D. student at Waseda University. His re-
search interests include Lyapunov stability, linear system,
system identification and control systems design. He is a

student member of IEEE.

Jinglu HU (Member)

He received a M.Sci. degree in Electronic Engineering
from Sun Yat-Sen University, Guangzhou, China in 1986,
and a Ph.D degree in Computer Science and System En-
gineering from Kyushu Institute of Technology, Iizuka,
Japan in 1997. From 1986 to 1988, he worked as a Re-
search Associate and from 1988 to 1993 a Lecturer at Sun
Yat-Sen University. From 1997 to 2003, he worked as a

Research Associate at Kyushu University. From 2003 to 2008, he worked
as an Associate Professor and since April 2008, he has been a Professor at
Graduate School of Information, Production and Systems of Waseda Uni-
versity. His research interests include Computational Intelligence such as
neural networks and genetic algorithms, and their applications to system
modeling and identification, bioinformatics, time series prediction, and so
on. He is a member of IEEE, IEEJ and IEICE.

Mohammad HamiruceMARHABAN

He received the B.E. degree in Electrical and Elec-
tronic Engineering from Salford University, United King-
dom, in 1998 and the Ph.D. degree in Electronic En-
gineering from Surrey University, United Kingdom, in
2003. He is an Associate Professor at the Department of
Electrical and Electronics Engineering, UPM. His area of
interest is intelligent control system and computer vision.

